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This paper proposes new variants of point forecast estimators in Markov switching
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real GNP in the U.S. The empirical and Monte Carlo simulation results on out-of-
sample forecasting show that the bagged forecast estimators outperform the benchmark
forecast estimator by Hamilton (1989) in the sense of the prediction mean squared error.
The Monte Carlo experiments present that interactions between a Markov process
for primitive states and an innovation affect the relative performance of the bagged
forecast estimators, and that effectiveness of the bagging does not die out as sample
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1 Introduction

The bagging (bootstrap aggregating) method (Breiman, 1996) has recently been applied in
analysis of forecasting time series data (Inoue and Kilian, 2003, 2008; Lee and Yang, 2006;
Stock and Watson, 2005). There, the presumed models are linear, or binary and quan-
tile. In the existing literature on bagging and time series forecasting, genuine dynamics—
autoregressive component—of the process of interest does not play a key role. Markov
switching models (Hamilton, 1989) are widely used in analyses of time series economic and
financial data (for example, Ang and Bekaert (2002); Garcia and Perron (1996); Guidolin
and Timmermann (2006, 2007); Perez-Quiros and Timmermann (2000)), where the nonlin-
ear dynamics is an important element. However, to the best of my knowledge, no attempt
has been made to implement the bagging method in Markov switching models. This paper
proposes new variants of point forecast estimators in Markov switching models utilizing the
bagging method, and applies them to forecast nonlinear dynamics of real GNP in the United
States.

In many economic and financial data, nonlinearity (Terdsvirta, 2006) or structural breaks
(Stock and Watson, 1996) exist, suggesting that economic agents’ forecasting must also be
nonlinear (Clements and Hendry, 2006). Markov switching models (Hamilton, 1989)—a
special case is the threshold autoregression (TAR) model (Tong, 1983) of observable shifts in
regime—adapt nonlinearity by making inference on stochastic changes from the discrete-state
process. The nonlinearity from shifts in regimes is determined by the interaction between
the data and the Markov chain. As the sample size is often small in forecasting application,
Markov switching models provide us flexible nonlinearity in a parsimonious way.

Another key ingredient of forecasting estimators in this paper is bagging. Breiman (1996)
introduces bagging in the field of machine learning in random sample settings. The bagging
method uses the bootstrap (Efron, 1979; Horowitz, 2000), but is a method to improve the
accuracy of the estimators or predictors themselves—rather than to approximate distribu-
tions and access the accuracy of parameter estimators or predictions. In the context of cross
sections, the existing literature on bagging studies estimators for nonlinear models of smooth
functions (Friedman and Hall, 2000), indicator predictors (Bithlmann and Yu, 2001), and
predictive risk estimators for discontinuous loss functions (Kitamura, 2001).

Recently, bagging has been analyzed in time series context. Lee and Yang (2006) study
bagging binary and quantile predictors, where the improvement of accuracy in predictions
comes from non-differentiabilities of objective functions. Inoue and Kilian (2003, 2008) and

Stock and Watson (2005) apply bagging to construct forecasts among many possible predic-



tors in linear dynamic models. In their cases, bagging improves the accuracy of forecasts,
due to variance reduction in the part of predictors other than deterministic and autoregres-
sive components. In contrast, this paper proposes bagged forecast estimators in nonlinear
dynamic models of stochastic regime switching. Improvement in accuracy of forecasts comes
from nonlinear dynamics of the process of interest.! In other words, it adopts the idea of
bagging in nonlinear models in cross section context by Friedman and Hall (2000) to dynamic
forecasting situations.

To implement bagging, we resample data by the bootstrap, construct a forecast—or an
estimate, or an objective function—for each bootstrap sample, and take an average over
the bootstrap replications. In the existing literature on bagging in time series forecasting,
in order to capture the dependence structure of the data, Lee and Yang (2006) and Inoue
and Kilian (2003, 2008) conduct the blocks bootstrap (Gongalves and White, 2004; Hall and
Horowitz, 1996). Stock and Watson (2005) implement the parametric bootstrap assuming
a normal distribution to the error term. The model is reduced to a linear model with
independent innovations.

In contrast, I implement bootstrapping in nonlinear dynamic models in which the non-
linearity comes from the changes in non-independent stochastic components. The nonlinear
dynamic model in which [ implement the bootstrap can be reduced to an autoregressive mov-
ing average (ARMA) model with serially dependent innovations. Direct draws of the serially
dependent innovations in the ARMA model are not feasible. Conducting the nonparametric
bootstrap without using information on the assumed model structure is not desirable. There-
fore, for nonlinear dynamic models of stochastic regime shifts, to implement the bootstrap
using the model information, values of the stochastic states also need to be drawn from the
estimated probability distribution. I propose new variants of the parametric bootstrap and
the residual bootstrap as I explain in detail later.

Empirical and Monte Carlo simulation results on out-of-sample point forecasting show
that the bagged forecast estimators outperform the benchmark forecast estimator by Hamil-
ton (1989) in terms of the prediction mean squared error. Monte Carlo results present
that interactions between a Markov process for primitive states and an innovation have an
influence on the relative performance of the bagged forecast estimators. Moreover, the ex-

perimental results present that the accuracy improvement by utilizing the bagging does not

1One recent paper by Li (2009) proposes bootstrapping in the TAR models. Both his paper and my paper
study forecasting in nonlinear dynamic models. However, Li (2009) uses the bootstrap to approximate the
distribution of predictors and improve confidence intervals of prediction, whereas I use bootstrap aggregating

to improve the forecasts themselves.



die out even in large sample. A possible reason is that the nonlinearity, which comes from
regime shifts, is stochastic in Markov switching models. The uncertainty about nonlinear-
ity exists regardless of sample size; hence, even in large sample. The bagging reduces the
variance of forecast that stems from stochastic nonlinearity.

This paper is organized as follows. The next section describes the model. Section 3
explains the bootstrap sampling procedure, the forecast estimators using the bagging, and
the forecast evaluation method. Section 4 explains Monte Carlo simulation procedure, and
presents Monte Carlo evidence on the numerical performance of the bagged forecast esti-
mators in Markov switching models. In section 5, I estimate the business cycle model on
real GNP in the United States—the first difference obeys a nonlinear stationary process,

construct forecasts, and present the results. Section 6 concludes.

2 Model

A process of 3, obeys a special case of an ARIMA model, in order to study forecasts as in

Hamilton (1989) for comparison.

Ay = cs, + 01AG 1 + G2AGr 2 + -+ + O A + €, (1)
where ¢;,7 = 1,...,r are parameters, Ay, = ¢, — §;—1, an innovation of ¢ is i.i.d.(0, 0?), and
s; represents the unobserved state at date t. The constant term c;, depends on the state at
date t, s;. For simplicity, non-dependency of ¢; on the state conditions for j = 1,...,r, is
assumed.

Furthermore, the process of ¢, is the sum of a Markov trend process of ARIMA(1,1,0),
ng, and an ARIMA(r,1,0) process without drift, Z;.

Yr = g + 2, (2)

where 2, — 2,1 = 01(Zim1 — Zia) + -+ O (Bimr — Zipo1) + &, iy — 1y = 5]+, and ¢ is
independent of n,; for all j. Here, s{’s are primitive states that follow a first-order Markov

process. oy and oy are parameters. The primitive state, s}, is such that
Prob(s; =1|sf ;=1)=0p
and (3)
Prob(s; =0|s;_; =0) =q.

To simplify notations, let y; = Ay, and z; = AZ;. Detailed explanation on the model is in

the appendix.



3 Bagged Forecasts

3.1 The Bootstrap

First of all, ML estimates are obtained as in Hamilton (1989). For the bootstrap data, ran-
dom draws for the independent innovations are obtained by either (1) the residual bootstrap,
or (2) the parametric bootstrap with a normally distributed error.

Let Y7 = (Y., Yr—1,---,Y_m)" be a vector containing all observations obtained through
date 7. The state s; is a first-order J(= 2""!) state Markov chain. Let P(s; = j|V.;0)
denote a probability of the state s; conditional on data obtained through date 7 given the
population parameters #. Collect these conditional probabilities in a (J x 1) vector of &,.
Let X denote an estimate of X.

3.1.1 Residual Bootstrap

I calculate residuals from estimates of the parameters in the first estimation and from ob-

served data.

étZyt—E(CsJyr)—§£1yt—1—"-—(/5ryt_r, t=r+1,....T (4)

In the above formula, I use the parameter estimates of ¢, a’s, and the estimated state proba-
bilities. The negative of the second term on the right hand side is E(cst \Vr) = (¢4, .., é])/éﬂq—,
where 7 =T or 7 = t. In other words, ét‘T is either the vector of estimated smoothed prob-
abilities, ét‘T, or the vector of estimated inferred probabilities, ét‘t. ¢, for 5 =1,...,J, are
estimated constant terms for each state, s;, in Equation (1).

Then, I repeat the following procedure B times, for b = 1,..., B. The subscript b denotes
the bootstrap replication, from 1 to B.

1. Draw bootstrapped residuals {e?}/_,,; with replacement from the original residuals

{ét}?:r-i-l'

2. Fort=r+1,...,T, construct blocks of n;’s such that

Yt—r

|
~—~

Ot
~—

N =
Yt

Assume that the distribution puts equal probability mass to each block. Draw an
initial block of (y?,...,4?) from the density distribution of the blocks.
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3. Fort = 1+r,...,T, draw state at date ¢, s?, from the estimated probabilities, fﬂT:
either from the estimated smoothed probabilities, éﬂT, or from the estimated inferred

probabilities, fﬂt.

4. Starting with the initial bootstrap observation block, (2, ..., %), construct the boot-

strap sample of y”’s recursively by

yg - Eb(CStD}T) + leyzlt)—l +oeee éry?—r + é?,t =7+ 1’ "'>T’ (6)

where E(c,,|V,) = (é1,...,¢,)'s?. 7 is T when the estimated smoothed state proba-
bilities are used to draw states, and is ¢ when the estimated inferred probabilities are
used. Here, the bootstrap sample starts at date ¢t = r + 1 rather than t = 1. As |
utilize the estimated smoothed probabilities that are obtained from date r 4+ 1 to date
T, I set the time period from 1 to r as an initial time block.

3.1.2 Parametric Bootstrap with a Normally Distributed Error

For each bootstrap replication, b = 1,..., B, I draw the bootstrap errors, {ef}tTZTH, from
the normal distribution with mean zero and the estimated variance from the first estimation,

2. The rest of the procedure is the same as in the case of the residual bootstrap above.

3.2 Forecasting Using Bagging

One-step-ahead optimal point forecast based on observable variables? is a sum of products

of forecasts conditional on states and inferred state probability at date 7"+ 1, {rqqyr.

E(yr|Yr;0) = >, P(sri1 = jlVr; 0) E(yraalsrir = 5, Vr; 0) (7)

After resampling data by the bootstrap, I estimate parameters and state probabilities
for each bootstrap replication, b =1, ..., B. For each bootstrap sample of Yy, b=1,..., B,

the forecast estimator is
Eb(yTHD)T, 9) = Z}I:1 Pb(ST-H = jlyT; Q)Eb(yTH’STH = J,Yr; 9)- (8)
In Equation (8), I calculate the estimates of inferred probabilities of states at date T'+ 1 by

~ Ab A
fg’+1|T =A fffﬂT» (9)

2We can consider longer than one-step-ahead point forecasts and see how the forecast horizon affects

relative performance of the bagged forecast estimator. In this paper, I analyze one-step-ahead forecasting as

a start.



where A denotes the (J xJ) transition matrix of state s;. I obtain the estimates of conditional

forecasts for j =1,...,J, by

E*(yria|srin = 5, Vri0) = & + @y + -+ dlyh . (10)

Taking an average of the maximum likelihood forecast estimators over the bootstrap

samples, the one-step-ahead bagged forecast estimator is defined as follows.3

E(yr|Vr;0) = 5 T E(yra|Vr; 0) (11)

The expression on the right hand side in Equation (11) is a Monte Carlo estimate of the
bagged forecast estimator, which approaches the true bagged forecast as B goes to infinity.

In estimation, I set the number of the bootstrap replications at 100.

3.3 Forecast Evaluation

The updating scheme I adopt is rolling horizon—rolling forecasts are constructed from only
the most recent fixed interval of the past data. The length of the data window, which is the
sample size for estimating and forecasting, T, remains the same as date is updated.

Let §4n denote E (Yeen|Vi; 0), an h-step-ahead forecasting estimator, where ¢ is the time
the forecast is made. An optimal forecast here implicitly uses squared difference between a
forecast and outcome as a loss function. The risk used is the expected loss—the expectation
is taken over the outcome of Y., given ), and holding parameters 6 fixed, as its value is

unknown at the time the forecast is made:

E[(yern = Gen)?[Ve; 0] (12)
The classical approach to forecasting uses the same risk on evaluating the forecast. In

contrast, I use the population prediction mean squared error (PMSE) conditional on the

outcome variable at the forecasting date:

E[(?/t+h - ?Jt+h)2|yt+h, Vi; 9]- (13)

Explanation on the PMSE and its sample analogue used is in the appendix.

3For simplicity, I abuse notation and use the same notation E for the expectation with respect to the

bootstrap probability measure.



4 Monte Carlo Experiments

4.1 Monte Carlo Procedure

In Monte Carlo simulation, I set the number of lags in autoregression at one, r = 1, or at
four, r = 4 as in Hamilton (1989). For simplicity, I explain Monte Carlo simulation procedure

in the case of one lag. Thus, the process of ¥, that is, Ay, is rewritten as

Yt = Cs, + Prye—1 + €,

where (14)

s, = Q18) + g — ¢r(aus;_; + o).
The primitive state at date 0 of s§ has a Bernoulli distribution such that the probability of
state 1 is ps:. I assume that the initial primitive state probability is ergodic. I also assume
that an initial observation o is normally distributed, yo ~ N(mg, 02), where the mean is
mg, and o3 is the variance. The mean of an initial observation is defined as the expectation
of a constant term associated with the initial state, mg = Psz * fo + (1— psa) -y

Given assumed parameter values of {¢1,p, q, ap, a1, 0, Pss 0o}, I generate the process of
y,t = 1,...,T, as follows. First, I draw an initial primitive state, s, from the Bernoulli
distribution of (ps:, 1 — ps)’. An initial value of the process, yo, is drawn from the normal
distribution of N(my,o?).

Second, I recursively draw primitive states, s;, for ¢ = 1,...,7. Primitive state, s}, is
drawn from Bernoulli distribution of (p,1 — p)’ if primitive state at the previous date is in
state 1 (i.e. sf ; = 1), and is drawn from Bernoulli distribution of (¢,1 — ¢)" if primitive
state at the previous date is in state 0 (i.e. s;_; = 0). Then, state is defined as s; = (I{s} =
1}, I{s; =0}, I{s;_, =1}, I{s;_, = 0})',t =1,...,T, where I{A} is an indicator function
that takes 1 if A is true and 0 otherwise.

Third, T draw errors of ¢;’s from the i.i.d. normal distribution of N(0,c?) and iterate on

yt:Cst—{_qblyt—l_l'eta for t = 1,...,T.

4.2 Results

Two benchmark parameter settings are as below. I perturb a presumed parameter value or
a presumed setting from the benchmark setting and see how forecast performance changes
across different presumed settings. The first setting corresponds to the paper by Hamilton

(1989). The second is a simplest setting.



e Parameter setting as in Hamilton (1989):
r =4 ap+ oy = 11647, a0 = —0.3577, ¢y = 0.014, ¢y — —0.58, g — —0.247, by —
—0.213,0 = 0.796, 09 = 0.796,p = 0.9049, ¢ = 0.755. Note that ps: = 0.72037636 by

the assumption that the initial primitive state probability is ergodic.

e Base parameter setting:
r=1La)+a =12,a0=—-04,¢; =0.1,0 = 0.7,00 = 0.7,p = 0.85,¢ = 0.7. Note
that ps: = 0.66666667 by the assumption that the initial primitive state probability is

ergodic.

Monte Carlo simulation results on out-of-sample one-step-ahead point forecasts show that
the bagged forecast estimators dominate the benchmark forecast estimator in terms of the
PMSE since the bagging reduces the variance. The tables of all the results are in the
appendix.

First, magnitude of the improvement by the bagging depends on uncertainty in the data
generating process. Table 7 compares the benchmark forecasts and the bagged forecasts that
use the parametric bootstrap with smoothed probability across different standard deviations
of the independent innovation term. The advantage to using the bagging becomes small when
the standard deviation is small. Note that ‘Percent difference in PMSE’ takes a negatively
large value when the bagging improves forecasts significantly.

Second, Tables 3 and 9 show the results across different Markov processes for the prim-
itive state. If both states are less persistent (for example, if Markov transition probability
of staying in the same state as at a previous date is 0.2) magnitude of the PMSE improve-
ment becomes small.? Note that persistence of states tends to be high in real data. For
instance, each Markov transition probability is larger than 0.7 in a study of real GNP in the
U.S. by Hamilton (1989). It is around 0.9 in an analysis of stock returns by Guidolin and
Timmermann (2007).

Uncertainty from the Markov process and the independent innovations determines nonlin-

earity of the observed process. Hence, relative performance of the bagged forecast estimators

4Overall, as the Markov transition probability of state 1 conditional on state 1 at the previous date,
p, is larger, PMSE improvement by the bagging increases. Note that an absolute value of the constant
term is larger in state 1 than in state 0 in these examples. High persistence of the state that generates a
large constant increases PMSE improvement by the bagging. However, given small values of p (for example,
p = 0.2) the improvement is larger as another Markov transition probability of state 0 conditional on state
0 at previous date is larger. That is, if state 1 is less persistent, the PMSE improvement by the bagging is

larger as persistence of state 0 increases.



across different Markov transition probabilities is interrelated to magnitude of uncertainty
from the independent innovations. If the standard deviation of the independent innovation
term is smaller than that in the base parameter setting (for example, o = 0.5) the rela-
tive performance of the bagged forecast estimators depends more on the Markov transition
probability of states as in Table 11.°

Third, percentage improvement in the PMSE when using the bagging is similar across
different parameter values of coefficient of the lagged dependent variable as in Table 8. Note

that non-dependency of coefficient on the state conditions is assumed in the model.
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Figure 1: Percent difference in PMSE by sample size

Fourth, Figure 1 shows relative performance of the bagged forecast estimators by sample
size of estimation.® Monte Carlo simulation results based on Markov switching models show
the bagging is also effective in large sample. A possible reason is that the nonlinearity comes

from regime shifts and is stochastic in Markov switching models. The uncertainty about

SIf the standard deviation of the independent innovation is larger (for example, o = 0.9) the magnitude
of PMSE improvement by the bagging does not vary much across different Markov transition probabilities
as in Table 12. Table 13 shows the results in smaller sample, 7' = 35. Table 10 compares the benchmark and

five bagging methods for different Markov transition probabilities of states.
6In Figure 1, plots are at sample sizes T = 35,40, 50, 60, . .., 140, 150, 200, 300, . .., 1000. Sample sizes for

forecast evaluation M are set to 100. I use smoothed probability of states to randomly draw states for both
the parametric and the residual bootstrap, and to construct original residuals for the residual bootstrap.
In Tables 4, 5 and 6, I set long horizons and compare the performance of the benchmark and five bagging

methods for sample sizes T' = 40, 150, and 500, respectively.
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nonlinearity exists regardless of sample size; hence, even in large sample. It implies that
the nonlinear forecasts are unstable even in large sample. The bagging reduces variances
of forecasts that stem from stochastic nonlinearity. Hence, as long as a Markov process for

primitive states generates nonlinearity, the bagging improves forecasts.

5 Application: Postwar Real GNP in the U.S.

I apply the above methods to the real GNP quarterly data in the United States. The data
come from Business Conditions Digest. The sample period is from the second quarter of
year 1951 to the fourth quarter of year 1984. The level of GNP is measured at an annual
rate in 1982 dollars. I let z; be the real GNP. g, = log (x;). For computational convenience,
I multiply Ag; by 100 in the estimation: y, = 100 x Ag;. The variable of g, is 100 times
the first difference in the log of real GNP. I set r = 4 as in Hamilton (1989) and study

out-of-sample one-step-ahead point forecasts.
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Figure 2: Out-of-sample one-step-ahead forecast estimates: T = 55

Figure 2 compares (1) forecasts by the benchmark estimator, (2) bagged forecasts using
the parametric bootstrap with smoothed state probability for random draws, and (3) bagged
forecasts using the residual bootstrap with smoothed probability for random draws and

original residuals. Table 14, Table 15, Table 16, Table 17, and Table 18 in the appendix
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show the results of means, biases, variances, and PMSE for T" = 45,55,65,75, and 85,
respectively. Due to the variance reduction, the bagging improves forecasts in the sense of
the prediction mean squared error. Overall, the magnitude of improvement in the prediction
mean squared error by the bagging is larger in smaller sample. However, note that sample

sizes for forecast evaluation are not identical across these tables.

6 Conclusion

This paper proposes new variants of point forecast estimators in Markov switching models
utilizing bagging. To construct the bagged forecast estimators, I implement the parametric
bootstrap and the residual bootstrap to nonlinear dynamic models in which the nonlinearity
comes from the changes in non-independent stochastic components.

I conduct Monte Carlo experiments to compare performance of the bagged forecast es-
timators with that of the benchmark forecast estimator in the sense of the PMSE. The
Monte Carlo simulation results show that interactions between a Markov process for primi-
tive states and independent innovations affect the relative performance of the bagged forecast
estimators. First, the advantage to using the bagging becomes small when uncertainty of
the independent innovations is small. Second, if all primitive states are less persistent,
magnitude of the PMSE improvement by the bagging becomes small. Third, if uncertainty
from the independent innovations is smaller, relative performance of the bagged forecasts
depends more on the Markov transition probabilities. Fourth, the Monte Carlo simulations
present that the bagged forecast estimators dominate the benchmark forecast estimator even
in large sample. A possible reason is that the nonlinearity which comes from regime shifts,
is stochastic in Markov switching models. The nonlinear forecasts are unstable regardless of
sample size as long as the Markov process produces nonlinearity. Hence, the bagging reduces
forecast variances that stem from stochastic nonlinearity.

I also apply the bagged forecast estimators to study nonstationary time series of postwar
U.S. real GNP as in Hamilton (1989), where the first difference obeys a nonlinear stationary
process. The empirical evidence on out-of-sample forecasting presents that the bagged fore-
cast estimators outperform the benchmark forecast estimators by Hamilton (1989) in the

sense of the prediction mean squared error, due to the variance reduction.
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A Appendix: Model

Two primitive states are assumed for simplicity. The state at date t, s;, depends on the
primitive states at date from t to rth lags (s7,...,s;_,) and is independent of past observations
on ¢;. The constant term in Equation (1) becomes ¢s, = a7 + g — ¢1(1sy | +ag) — -+ - —
¢r(a1s;_, + ap). To normalize, I set oy > 0. In the estimation, I assume normality of the
innovation term €. Let ¢(L) = 1 — ¢ L — ¢y L? —--- — ¢, L". T assume the stability condition

that all the roots of ¢(z) = 0 are greater than 1 in absolute value.

14



A.1 Discussion of the Model

Z is a driftless ARIMA(r,1,0) process whose first difference contains i.i.d.(0,¢?) innova-
tions. In contrast, n; is an ARIMA(1,1,0) process whose first difference contains the non-

independent white noise innovations.

A.1.1 Primitive State Process — Serial Dependence, Non-normality, and Strict

Stationarity

By the assumption of the first-order Markov process, the primitive state process is strictly
stationary, and is an AR(1) process with unusual probability distribution of the innovation
sequence.

st =(1—q) +Xsiy +uy, (15)

where A = —1 4+ p + ¢. Thus, conditional on s;_; = 1, v, = 1 — p with probability p,
and v; = —p with probability 1 — p. Conversely, conditional on s; ; = 0, v; = ¢ — 1 with
probability ¢, and v; = ¢ with probability 1 — q.

The innovation term, vy, is a white noise. That is, it is zero mean and serially un-
correlated: E(v¢|s; ;) = 0, hence, E(v;) = 0, E(vsi ;) = 0 and E(vvej) = 0 for
j = 1,2,.... However, the innovation term, vy, is not independent of lagged value of the
primitive state. For instance, E(v? | s;_;) depends on s ; : E(v?|sf ,=1)=p(1—p) and
B} | s;.1=0)=q(1 —q).

First, the innovation term, vy, cannot be normally distributed, whereas I suppose normal-
ity of the innovations in the other AR component, ¢;’s, in the estimation. Second, the serial
dependence of the system g; comes only from the innovation term in the Markov process,
vg. It is because the other innovation term of ¢ is i.i.d. and is independent of n.; for all
j. The serial dependence of v, generates a nonlinear process for the observed series g;. The
best forecast is nonlinear because of this serial dependence.

Since the innovation term, vy, is a white noise, the primitive state process is covariance
stationary when [p + ¢ — 1| < 1. Moreover, the primitive state process is strictly stationary
because the joint distribution of the processes depends only on their relative distance. The
primitive state is strictly stationary when |[p+¢—1| = 1, too. But, in this case, the primitive
state is degenerated to be a constant, that is, a non-stochastic process, and the process of g,
becomes a usual ARIMA process whose first difference has i.i.d. innovations. The condition

such that [p+ ¢ — 1| > 1 cannot be the case, because 0 < p,¢ < 1 hold.
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A.1.2 I(1) Process

Although the process of g;(= log(x;)) contains the special non-independent innovations, it
has the same property as the usual I(1) process. Information about the economy at an initial
point has no effect on the long run growth rate, and a permanent effect on the level. To see

it, let’s consider Beveridge-Nelson decomposition.

Agt ==
ap + a18; + 2 (16)

= g+ a11=% + (=5 v + g o)

where ¢(L) = 1—¢ L—¢oL?—---—¢p,L". There exist (L) = 1411 L+, L*+- - - and a white
noise u; such that (ﬁvt + ﬁ@e) = ¢(L)u;. The wu,; is a white noise process, because the
innovation terms ¢; and v; are white noises and are independent of each other. I assume one
summability condition Y322 j|1);| < oo. Using the following identity (L) = ¥ (1) + AB(L),
where A =1~ L, B(L) = 372, B;Ll, Bj = —(¥j41 + ¥j2 + - - -), the process of Ag, can be
rewritten as

Agy =0+ Y(D)ug +ne — -1, (17)

where 0 = ag + ali%?\. The process of 7, is obtained as

G=0-t+>t jui+m+ (Jo— o) (18)

By the one summability assumption, $(L) is absolutely summable. Therefore, the third
term, 7, is zero-mean covariance stationary. The first component, ¢ - ¢, is linear time trend.
The second component, 3°¢_, u;, is stochastic trend—that is, driftless random walk. The last
component, 7o — 1o, is the initial condition. Here, implicitly, I assume that wu, is a stationary
martingale difference sequence such that 0 < E(u?) < oo and £+ 1, E(uf|u1,u—a,- - )
converges in probability to F(u?).”

Both components, n; and Z;, contain stochastic trend, stationary process and the initial
condition. The n; term contains the linear time trend. While information about the economy
at date 0 has no effect on the long run growth rate of g;, it does exert a permanent effect on

the level. The permanent effect of the information differences between the states comes only

from the Markov trend term. Hence, when I compare certain knowledge about the initial

"Because the two innovation terms, €; and vy, are independent, I can analyze them separately. Since e,
is i.i.d., the assumptions for the property of the above stationary martingale difference sequence hold for its

component. As for v, as t goes to infinity E(v?) = mp(1 — p) + (1 — m)q(1 — q), where ™ = 2:3‘1, and the

assumptions for vy also seem to hold.
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states, I can focus on the effect of n;. The effect of the difference between these knowledge

A Eoxi|mo=1 k—(=14+p+q)
1-X Eoz¢|mo=0 rk—exp(a1)(—1+p+q)

as t — 00, where £ is a solution of k(q + pexp(a1) — k) = exp(ay)(—1 4+ p+ q).

sets is Elg|sy = 1] — Elgilss =0] — oy as t — o0.

B Appendix: PMSE

The population prediction mean squared error is population variance plus squared bias of
the forecast estimator. Let M denote a sample size for forecast evaluation. To simplify the
notation, E[.|y;1n] denotes E[.|yiin, Vi; 0], and E[.| denotes E[.|)}; 6] in this section. The
PMSE conditional on the target variable of vy, is

E[(yeyn — @t+h>2|yt+h]

= E{G1en — E@esnlyesn) P 1Yeen] + [EGern — Yesnlyeen)]
= El{ern — E(Ge4n) Y]+ [E(Gr4n) — Yean)®

= Var(gisn) + [Bias(Jern|yern)]*.

(19)

The derivation from the second line to the third line in Equation (19) comes from the fact
that the forecast of 7,4 is a function of the current and past data of );, and does not depend
on the target variable. The evaluation method removes randomness of the target variable
and accesses the PMSE from the forecasting errors only.

To obtain the sample PMSE corresponding to Equation (19), I calculate the sample

prediction variance by

Var(g)t+h) (20)
= LM G — 2 M G
The sample prediction bias is obtained by
Bias(Jrnlyern) (21)

= ﬁ ZtT:+TM_1(@t+h ~ Yiyh)-

C Appendix: Monte Carlo Simulation

A few notes on the Monte Carlo simulation are as follows. First, in the Monte Carlo pro-
cedure, I use the same random draws of standard normal and uniform distributions across
different parameter settings. Given presumed parameter values, I obtain simulated data of

the longest sample size once, and use a part of them in the analysis for a smaller sample
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size. In other words, across different total sample sizes of simulated data, simulated data at
the overlapping dates are the same in an identical parameter setting.

Second, the first 499 simulated data are discarded. In other words, for estimation, fore-
casting, and the forecast evaluation, I use observations from the 500th simulated data.

Third, due to computational burden, for each combination of a sample size of estimation,
a sample size of forecast evaluation, and parameter setting, I conduct Monte Carlo simulation
once. Instead of many simulations, I let a time horizon be very long—that is, the sample
size of forecast evaluation is large, in some simulation experiments.

In the following tables, ‘Variance’ is sample prediction variance of a forecast from Equa-
tion (20). ‘Bias’ is sample prediction bias of a forecast from Equation (21). ‘Mean’ is sample
prediction mean of a forecast: ﬁ S EM=t g, . ‘Difference in PMSE’ denotes the percent-

age difference between the prediction mean squared error using the bagging and that in the

PMSEyqoaing—PMSE
benchmark: 100 x bagging benchmark
00 PMSEbenchmark

C.1 Hamilton Parameter Setting

Table 1: Monte Carlo Simulation

T=40, M=1000, r=4. Parameter values are the same as in Hamilton (1989).

Benchmark Bagging
Type of Bootstrap Parametric ~ Parametric Residual Residual Residual
State probability for draws smoothed inferred smoothed smoothed inferred
State probability for residuals smoothed inferred inferred
Mean 0.97333 0.99554 0.99361 0.99264 0.99014 0.99966
Bias -0.04650 -0.02430 -0.02622 -0.02720 -0.02969 -0.02018
Variance 1.90515 0.09806 0.22470 0.43796 0.41203 0.57132
PMSE 1.90731 0.09865 0.22539 0.43870 0.41291 0.57173
Difference in PMSE, % -94.83 -88.18 -77.00 -78.35 -70.02
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Table 2: Monte Carlo Simulation

T=150, M=1000, r=4. Parameter values are the same as in Hamilton (1989).

Benchmark Bagging
Type of Bootstrap Parametric ~ Parametric Residual Residual Residual
State probability for draws smoothed inferred smoothed smoothed inferred
State probability for residuals smoothed inferred inferred
Mean 1.00589 1.02557 1.02134 1.02364 1.03167 1.03876
Bias -0.01389 0.00580 0.00157 0.00386 0.01190 0.01899
Variance 1.65749 0.03942 0.35748 0.33684 0.33735 0.66216
PMSE 1.65768 0.03946 0.35748 0.33686 0.33749 0.66252
Difference in PMSE, % -97.62 -78.44 -79.68 -79.64 -60.03
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C.2 Base Parameter Setting

Table 4: Monte Carlo Simulation

T=40, M=1000, r=1. Parameter values are the same as in the base parameter set.

Benchmark Bagging
Type of Bootstrap Parametric ~ Parametric Residual Residual Residual
State probability for draws smoothed inferred smoothed smoothed inferred
State probability for residuals smoothed inferred inferred
Mean 1.00206 0.95953 0.84674 0.96408 1.07841 0.96204
Bias 0.03957 -0.00296 -0.11575 0.00159 0.11593 -0.00044
Variance 0.10253 0.01660 0.04021 0.01494 0.01769 0.02446
PMSE 0.10410 0.01660 0.05361 0.01494 0.03113 0.02446
Difference in PMSE, % -84.05 -48.50 -85.65 -70.10 -76.50
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Table 5: Monte Carlo Simulation

T=150, M=1000, r=1. Parameter values are the same as in the base parameter set.

Benchmark Bagging
Type of Bootstrap Parametric ~ Parametric Residual Residual Residual
State probability for draws smoothed inferred smoothed smoothed inferred
State probability for residuals smoothed inferred inferred
Mean 0.99503 0.95755 0.85249 0.96150 1.06749 0.95948
Bias 0.03601 -0.00146 -0.10653 0.00248 0.10848 0.00047
Variance 0.08557 0.00767 0.02710 0.00433 0.00499 0.01328
PMSE 0.08687 0.00767 0.03845 0.00434 0.01676 0.01328
Difference in PMSE, % -91.17 -55.73 -95.01 -80.71 -84.71

Table 6: Monte Carlo Simulation

T=500, M=1000, r=1. Parameter values are the same as in the base parameter set.

Benchmark Bagging
Type of Bootstrap Parametric ~ Parametric Residual Residual Residual
State probability for draws smoothed inferred smoothed smoothed inferred
State probability for residuals smoothed inferred inferred
Mean 0.98926 0.95265 0.84617 0.95525 1.06519 0.95389
Bias 0.03412 -0.00250 -0.10897 0.00010 0.11004 -0.00126
Variance 0.07954 0.00577 0.02506 0.00242 0.00125 0.01155
PMSE 0.08070 0.00577 0.03694 0.00242 0.01336 0.01155
Difference in PMSE, % -92.84 -54.23 -97.00 -83.45 -85.69
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D Appendix: Application

Table 14: Real GNP in the U.S.

T (sample size of estimation) =45, M (sample size of forecast evaluation) =90, r (# lags) =4.

Benchmark Bagging
Type of Bootstrap Parametric ~ Parametric Residual Residual Residual
State probability for draws smoothed inferred smoothed smoothed inferred
State probability for residuals smoothed inferred inferred
Mean 0.67980 0.75803 0.74745 0.73797 0.75698 0.74212
Bias -0.06623 0.01200 0.00143 -0.00806 0.01095 -0.00391
Variance 0.58287 0.12983 0.13386 0.16172 0.14801 0.14678
PMSE 0.58726 0.12997 0.13386 0.16179 0.14813 0.14679
Difference in PMSE, % -77.87 -77.21 -72.45 -74.78 -75.00
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Table 15: Real GNP in the U.S.

T (sample size of estimation) =55, M (sample size of forecast evaluation) =80, r (# lags) =4.

Benchmark Bagging
Type of Bootstrap Parametric ~ Parametric Residual Residual Residual
State probability for draws smoothed inferred smoothed smoothed inferred
State probability for residuals smoothed inferred inferred
Mean 0.78937 0.79537 0.81182 0.81094 0.78056 0.81182
Bias 0.08034 0.08635 0.10280 0.10192 0.07153 0.10280
Variance 0.32766 0.07483 0.08242 0.08353 0.08296 0.08242
PMSE 0.33411 0.08229 0.09299 0.09391 0.08807 0.09299
Difference in PMSE, % -75.37 -72.17 -71.89 -73.64 -72.17
Table 16: Real GNP in the U.S.
T (sample size of estimation) =65, M (sample size of forecast evaluation) =70, r (# lags) =4.
Benchmark Bagging

Type of Bootstrap Parametric ~ Parametric Residual Residual Residual
State probability for draws smoothed inferred smoothed smoothed inferred
State probability for residuals smoothed inferred inferred
Mean 0.72385 0.75869 0.77920 0.75370 0.73408 0.72989
Bias 0.08960 0.12445 0.14496 0.11945 0.09983 0.09564
Variance 0.17170 0.06269 0.04530 0.06836 0.08738 0.04970
PMSE 0.17973 0.07818 0.06631 0.08262 0.09735 0.05885
Difference in PMSE, % -56.50 -63.11 -54.03 -45.84 -67.26
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Table 17: Real GNP in the U.S.

T (sample size of estimation) =75, M (sample size of forecast evaluation) =60, r (# lags) =4.

Benchmark Bagging
Type of Bootstrap Parametric ~ Parametric Residual Residual Residual
State probability for draws smoothed inferred smoothed smoothed inferred
State probability for residuals smoothed inferred inferred
Mean 0.71622 0.71737 0.76592 0.71105 0.69325 0.74687
Bias 0.09622 0.09738 0.14592 0.09105 0.07325 0.12687
Variance 0.13394 0.05238 0.05322 0.06364 0.06490 0.04660
PMSE 0.14319 0.06186 0.07452 0.07193 0.07027 0.06270
Difference in PMSE, % -56.80 -47.96 -49.77 -50.93 -56.21

Table 18: Real GNP in the U.S.

T (sample size of estimation) =85, M (sample size of forecast evaluation) =50, r (# lags) =4.

Benchmark Bagging
Type of Bootstrap Parametric ~ Parametric Residual Residual Residual
State probability for draws smoothed inferred smoothed smoothed inferred
State probability for residuals smoothed inferred inferred
Mean 0.73161 0.74922 0.78627 0.73870 0.71612 0.75162
Bias 0.12444 0.14205 0.17910 0.13153 0.10895 0.14445
Variance 0.15789 0.07382 0.03621 0.07660 0.08826 0.04156
PMSE 0.17338 0.09400 0.06829 0.09390 0.10013 0.06243
Difference in PMSE, % -45.78 -60.61 -45.84 -42.25 -63.99
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