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Abstract

This paper proposes new variants of point forecast estimators in Markov switching

models (Hamilton, 1989) utilizing bagging (Breiman, 1996), and applies them to study

real GNP in the U.S. The empirical and Monte Carlo simulation results on out-of-

sample forecasting show that the bagged forecast estimators outperform the benchmark

forecast estimator by Hamilton (1989) in the sense of the prediction mean squared error.

The Monte Carlo experiments present that interactions between a Markov process

for primitive states and an innovation affect the relative performance of the bagged

forecast estimators, and that effectiveness of the bagging does not die out as sample

size increases.
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1 Introduction

The bagging (bootstrap aggregating) method (Breiman, 1996) has recently been applied in

analysis of forecasting time series data (Inoue and Kilian, 2003, 2008; Lee and Yang, 2006;

Stock and Watson, 2005). There, the presumed models are linear, or binary and quan-

tile. In the existing literature on bagging and time series forecasting, genuine dynamics—

autoregressive component—of the process of interest does not play a key role. Markov

switching models (Hamilton, 1989) are widely used in analyses of time series economic and

financial data (for example, Ang and Bekaert (2002); Garcia and Perron (1996); Guidolin

and Timmermann (2006, 2007); Perez-Quiros and Timmermann (2000)), where the nonlin-

ear dynamics is an important element. However, to the best of my knowledge, no attempt

has been made to implement the bagging method in Markov switching models. This paper

proposes new variants of point forecast estimators in Markov switching models utilizing the

bagging method, and applies them to forecast nonlinear dynamics of real GNP in the United

States.

In many economic and financial data, nonlinearity (Teräsvirta, 2006) or structural breaks

(Stock and Watson, 1996) exist, suggesting that economic agents’ forecasting must also be

nonlinear (Clements and Hendry, 2006). Markov switching models (Hamilton, 1989)—a

special case is the threshold autoregression (TAR) model (Tong, 1983) of observable shifts in

regime—adapt nonlinearity by making inference on stochastic changes from the discrete-state

process. The nonlinearity from shifts in regimes is determined by the interaction between

the data and the Markov chain. As the sample size is often small in forecasting application,

Markov switching models provide us flexible nonlinearity in a parsimonious way.

Another key ingredient of forecasting estimators in this paper is bagging. Breiman (1996)

introduces bagging in the field of machine learning in random sample settings. The bagging

method uses the bootstrap (Efron, 1979; Horowitz, 2000), but is a method to improve the

accuracy of the estimators or predictors themselves—rather than to approximate distribu-

tions and access the accuracy of parameter estimators or predictions. In the context of cross

sections, the existing literature on bagging studies estimators for nonlinear models of smooth

functions (Friedman and Hall, 2000), indicator predictors (Bühlmann and Yu, 2001), and

predictive risk estimators for discontinuous loss functions (Kitamura, 2001).

Recently, bagging has been analyzed in time series context. Lee and Yang (2006) study

bagging binary and quantile predictors, where the improvement of accuracy in predictions

comes from non-differentiabilities of objective functions. Inoue and Kilian (2003, 2008) and

Stock and Watson (2005) apply bagging to construct forecasts among many possible predic-
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tors in linear dynamic models. In their cases, bagging improves the accuracy of forecasts,

due to variance reduction in the part of predictors other than deterministic and autoregres-

sive components. In contrast, this paper proposes bagged forecast estimators in nonlinear

dynamic models of stochastic regime switching. Improvement in accuracy of forecasts comes

from nonlinear dynamics of the process of interest.1 In other words, it adopts the idea of

bagging in nonlinear models in cross section context by Friedman and Hall (2000) to dynamic

forecasting situations.

To implement bagging, we resample data by the bootstrap, construct a forecast—or an

estimate, or an objective function—for each bootstrap sample, and take an average over

the bootstrap replications. In the existing literature on bagging in time series forecasting,

in order to capture the dependence structure of the data, Lee and Yang (2006) and Inoue

and Kilian (2003, 2008) conduct the blocks bootstrap (Gonçalves and White, 2004; Hall and

Horowitz, 1996). Stock and Watson (2005) implement the parametric bootstrap assuming

a normal distribution to the error term. The model is reduced to a linear model with

independent innovations.

In contrast, I implement bootstrapping in nonlinear dynamic models in which the non-

linearity comes from the changes in non-independent stochastic components. The nonlinear

dynamic model in which I implement the bootstrap can be reduced to an autoregressive mov-

ing average (ARMA) model with serially dependent innovations. Direct draws of the serially

dependent innovations in the ARMA model are not feasible. Conducting the nonparametric

bootstrap without using information on the assumed model structure is not desirable. There-

fore, for nonlinear dynamic models of stochastic regime shifts, to implement the bootstrap

using the model information, values of the stochastic states also need to be drawn from the

estimated probability distribution. I propose new variants of the parametric bootstrap and

the residual bootstrap as I explain in detail later.

Empirical and Monte Carlo simulation results on out-of-sample point forecasting show

that the bagged forecast estimators outperform the benchmark forecast estimator by Hamil-

ton (1989) in terms of the prediction mean squared error. Monte Carlo results present

that interactions between a Markov process for primitive states and an innovation have an

influence on the relative performance of the bagged forecast estimators. Moreover, the ex-

perimental results present that the accuracy improvement by utilizing the bagging does not

1One recent paper by Li (2009) proposes bootstrapping in the TAR models. Both his paper and my paper

study forecasting in nonlinear dynamic models. However, Li (2009) uses the bootstrap to approximate the

distribution of predictors and improve confidence intervals of prediction, whereas I use bootstrap aggregating

to improve the forecasts themselves.
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die out even in large sample. A possible reason is that the nonlinearity, which comes from

regime shifts, is stochastic in Markov switching models. The uncertainty about nonlinear-

ity exists regardless of sample size; hence, even in large sample. The bagging reduces the

variance of forecast that stems from stochastic nonlinearity.

This paper is organized as follows. The next section describes the model. Section 3

explains the bootstrap sampling procedure, the forecast estimators using the bagging, and

the forecast evaluation method. Section 4 explains Monte Carlo simulation procedure, and

presents Monte Carlo evidence on the numerical performance of the bagged forecast esti-

mators in Markov switching models. In section 5, I estimate the business cycle model on

real GNP in the United States—the first difference obeys a nonlinear stationary process,

construct forecasts, and present the results. Section 6 concludes.

2 Model

A process of ỹt obeys a special case of an ARIMA model, in order to study forecasts as in

Hamilton (1989) for comparison.

∆ỹt = cst + φ1∆ỹt−1 + φ2∆ỹt−2 + · · ·+ φr∆ỹt−r + εt, (1)

where φj, j = 1, ..., r are parameters, ∆ỹt = ỹt − ỹt−1, an innovation of εt is i.i.d.(0, σ2), and

st represents the unobserved state at date t. The constant term cst depends on the state at

date t, st. For simplicity, non-dependency of φj on the state conditions for j = 1, ..., r, is

assumed.

Furthermore, the process of ỹt is the sum of a Markov trend process of ARIMA(1,1,0),

nt, and an ARIMA(r,1,0) process without drift, z̃t.

ỹt = nt + z̃t, (2)

where z̃t− z̃t−1 = φ1(z̃t−1− z̃t−2)+ · · ·+φr(z̃t−r− z̃t−r−1)+ εt , nt−nt−1 = α1s
∗
t +α0, and εt is

independent of nt+j for all j. Here, s∗t ’s are primitive states that follow a first-order Markov

process. α0 and α1 are parameters. The primitive state, s∗t , is such that

Prob(s∗t = 1|s∗t−1 = 1) = p

and

Prob(s∗t = 0|s∗t−1 = 0) = q.

(3)

To simplify notations, let yt ≡ ∆ỹt and zt ≡ ∆z̃t. Detailed explanation on the model is in

the appendix.
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3 Bagged Forecasts

3.1 The Bootstrap

First of all, ML estimates are obtained as in Hamilton (1989). For the bootstrap data, ran-

dom draws for the independent innovations are obtained by either (1) the residual bootstrap,

or (2) the parametric bootstrap with a normally distributed error.

Let Yτ = (y′τ , yτ−1, . . . , y−m)′ be a vector containing all observations obtained through

date τ . The state st is a first-order J(= 2r+1) state Markov chain. Let P (st = j|Yτ ; θ)
denote a probability of the state st conditional on data obtained through date τ given the

population parameters θ. Collect these conditional probabilities in a (J × 1) vector of ξt|τ .

Let X̂ denote an estimate of X.

3.1.1 Residual Bootstrap

I calculate residuals from estimates of the parameters in the first estimation and from ob-

served data.

ε̂t = yt − Ê(cst|Yτ )− φ̂1yt−1 − · · · − φ̂ryt−r, t = r + 1, . . . , T (4)

In the above formula, I use the parameter estimates of φ, α’s, and the estimated state proba-

bilities. The negative of the second term on the right hand side is Ê(cst |Yτ ) = (ĉ1, . . . , ĉJ)′ξ̂t|τ ,

where τ = T or τ = t. In other words, ξ̂t|τ is either the vector of estimated smoothed prob-

abilities, ξ̂t|T , or the vector of estimated inferred probabilities, ξ̂t|t. ĉj, for j = 1, . . . , J, are

estimated constant terms for each state, st, in Equation (1).

Then, I repeat the following procedure B times, for b = 1, . . . , B. The subscript b denotes

the bootstrap replication, from 1 to B.

1. Draw bootstrapped residuals {ebt}Tt=r+1 with replacement from the original residuals

{ε̂t}Tt=r+1.

2. For t = r + 1, . . . , T, construct blocks of ηt’s such that

ηt ≡


yt−r

...

yt

 . (5)

Assume that the distribution puts equal probability mass to each block. Draw an

initial block of (yb1, . . . , y
b
r)
′ from the density distribution of the blocks.
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3. For t = 1 + r, . . . , T , draw state at date t, sbt , from the estimated probabilities, ξ̂t|τ :

either from the estimated smoothed probabilities, ξ̂t|T , or from the estimated inferred

probabilities, ξ̂t|t.

4. Starting with the initial bootstrap observation block, (yb1, . . . , y
b
r)
′, construct the boot-

strap sample of ybt ’s recursively by

ybt = Êb(cst|Yτ ) + φ̂1y
b
t−1 + · · ·+ φ̂ry

b
t−r + ε̂bt , t = r + 1, ..., T, (6)

where Êb(cst|Yτ ) = (ĉ1, . . . , ĉJ)′sbt . τ is T when the estimated smoothed state proba-

bilities are used to draw states, and is t when the estimated inferred probabilities are

used. Here, the bootstrap sample starts at date t = r + 1 rather than t = 1. As I

utilize the estimated smoothed probabilities that are obtained from date r+ 1 to date

T , I set the time period from 1 to r as an initial time block.

3.1.2 Parametric Bootstrap with a Normally Distributed Error

For each bootstrap replication, b = 1, . . . , B, I draw the bootstrap errors, {ebt}Tt=r+1, from

the normal distribution with mean zero and the estimated variance from the first estimation,

σ̂2. The rest of the procedure is the same as in the case of the residual bootstrap above.

3.2 Forecasting Using Bagging

One-step-ahead optimal point forecast based on observable variables2 is a sum of products

of forecasts conditional on states and inferred state probability at date T + 1, ξT+1|T .

E(yT+1|YT ; θ) =
∑J
j=1 P (sT+1 = j|YT ; θ)E(yT+1|sT+1 = j,YT ; θ) (7)

After resampling data by the bootstrap, I estimate parameters and state probabilities

for each bootstrap replication, b = 1, . . . , B. For each bootstrap sample of YT , b = 1, . . . , B,

the forecast estimator is

Êb(yT+1|YT , θ) =
∑J
j=1 P̂

b(sT+1 = j|YT ; θ)Êb(yT+1|sT+1 = j,YT ; θ). (8)

In Equation (8), I calculate the estimates of inferred probabilities of states at date T + 1 by

ξ̂bT+1|T = Λ̂
b
ξ̂bT |T , (9)

2We can consider longer than one-step-ahead point forecasts and see how the forecast horizon affects

relative performance of the bagged forecast estimator. In this paper, I analyze one-step-ahead forecasting as

a start.
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where Λ denotes the (J×J) transition matrix of state st. I obtain the estimates of conditional

forecasts for j = 1, . . . , J , by

Êb(yT+1|sT+1 = j,YT ; θ) = ĉbj + φ̂b1y
b
T + · · ·+ φ̂bry

b
T−r. (10)

Taking an average of the maximum likelihood forecast estimators over the bootstrap

samples, the one-step-ahead bagged forecast estimator is defined as follows.3

Ê(yT+1|YT ; θ) ≈ 1
B

∑B
b=1 Ê

b(yT+1|YT ; θ) (11)

The expression on the right hand side in Equation (11) is a Monte Carlo estimate of the

bagged forecast estimator, which approaches the true bagged forecast as B goes to infinity.

In estimation, I set the number of the bootstrap replications at 100.

3.3 Forecast Evaluation

The updating scheme I adopt is rolling horizon—rolling forecasts are constructed from only

the most recent fixed interval of the past data. The length of the data window, which is the

sample size for estimating and forecasting, T , remains the same as date is updated.

Let ŷt+h denote Ê(yt+h|Yt; θ), an h-step-ahead forecasting estimator, where t is the time

the forecast is made. An optimal forecast here implicitly uses squared difference between a

forecast and outcome as a loss function. The risk used is the expected loss—the expectation

is taken over the outcome of Yt+h given Yt and holding parameters θ fixed, as its value is

unknown at the time the forecast is made:

E[(yt+h − ŷt+h)2|Yt; θ]. (12)

The classical approach to forecasting uses the same risk on evaluating the forecast. In

contrast, I use the population prediction mean squared error (PMSE) conditional on the

outcome variable at the forecasting date:

E[(yt+h − ŷt+h)2|yt+h,Yt; θ]. (13)

Explanation on the PMSE and its sample analogue used is in the appendix.

3For simplicity, I abuse notation and use the same notation E for the expectation with respect to the

bootstrap probability measure.
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4 Monte Carlo Experiments

4.1 Monte Carlo Procedure

In Monte Carlo simulation, I set the number of lags in autoregression at one, r = 1, or at

four, r = 4 as in Hamilton (1989). For simplicity, I explain Monte Carlo simulation procedure

in the case of one lag. Thus, the process of yt, that is, ∆ỹt, is rewritten as

yt = cst + φ1yt−1 + εt,

where

cst = α1s
∗
t + α0 − φ1(α1s

∗
t−1 + α0).

(14)

The primitive state at date 0 of s∗0 has a Bernoulli distribution such that the probability of

state 1 is ps∗0 . I assume that the initial primitive state probability is ergodic. I also assume

that an initial observation y0 is normally distributed, y0 ∼ N(m0, σ
2
0), where the mean is

m0, and σ2
0 is the variance. The mean of an initial observation is defined as the expectation

of a constant term associated with the initial state, m0 ≡ ps∗0 · µ0 + (1− ps∗0) · µ1.

Given assumed parameter values of {φ1, p, q, α0, α1, σ, ps∗0 , σ0}, I generate the process of

yt, t = 1, . . . , T, as follows. First, I draw an initial primitive state, s∗0, from the Bernoulli

distribution of (ps∗0 , 1 − ps∗0)′. An initial value of the process, y0, is drawn from the normal

distribution of N(m0, σ
2
0).

Second, I recursively draw primitive states, s∗t , for t = 1, . . . , T . Primitive state, s∗t , is

drawn from Bernoulli distribution of (p, 1 − p)′ if primitive state at the previous date is in

state 1 (i.e. s∗t−1 = 1), and is drawn from Bernoulli distribution of (q, 1 − q)′ if primitive

state at the previous date is in state 0 (i.e. s∗t−1 = 0). Then, state is defined as st ≡ (I{s∗t =

1}, I{s∗t = 0}, I{s∗t−1 = 1}, I{s∗t−1 = 0})′, t = 1, . . . , T, where I{A} is an indicator function

that takes 1 if A is true and 0 otherwise.

Third, I draw errors of εt’s from the i.i.d. normal distribution of N(0, σ2) and iterate on

yt = cst + φ1yt−1 + εt, for t = 1, . . . , T.

4.2 Results

Two benchmark parameter settings are as below. I perturb a presumed parameter value or

a presumed setting from the benchmark setting and see how forecast performance changes

across different presumed settings. The first setting corresponds to the paper by Hamilton

(1989). The second is a simplest setting.
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• Parameter setting as in Hamilton (1989):

r = 4, α0 + α1 = 1.1647, α0 = −0.3577, φ1 = 0.014, φ2 = −0.58, φ3 = −0.247, φ4 =

−0.213, σ = 0.796, σ0 = 0.796, p = 0.9049, q = 0.755. Note that ps∗0 = 0.72037636 by

the assumption that the initial primitive state probability is ergodic.

• Base parameter setting:

r = 1, α0 + α1 = 1.2, α0 = −0.4, φ1 = 0.1, σ = 0.7, σ0 = 0.7, p = 0.85, q = 0.7. Note

that ps∗0 = 0.66666667 by the assumption that the initial primitive state probability is

ergodic.

Monte Carlo simulation results on out-of-sample one-step-ahead point forecasts show that

the bagged forecast estimators dominate the benchmark forecast estimator in terms of the

PMSE since the bagging reduces the variance. The tables of all the results are in the

appendix.

First, magnitude of the improvement by the bagging depends on uncertainty in the data

generating process. Table 7 compares the benchmark forecasts and the bagged forecasts that

use the parametric bootstrap with smoothed probability across different standard deviations

of the independent innovation term. The advantage to using the bagging becomes small when

the standard deviation is small. Note that ‘Percent difference in PMSE’ takes a negatively

large value when the bagging improves forecasts significantly.

Second, Tables 3 and 9 show the results across different Markov processes for the prim-

itive state. If both states are less persistent (for example, if Markov transition probability

of staying in the same state as at a previous date is 0.2) magnitude of the PMSE improve-

ment becomes small.4 Note that persistence of states tends to be high in real data. For

instance, each Markov transition probability is larger than 0.7 in a study of real GNP in the

U.S. by Hamilton (1989). It is around 0.9 in an analysis of stock returns by Guidolin and

Timmermann (2007).

Uncertainty from the Markov process and the independent innovations determines nonlin-

earity of the observed process. Hence, relative performance of the bagged forecast estimators

4Overall, as the Markov transition probability of state 1 conditional on state 1 at the previous date,

p, is larger, PMSE improvement by the bagging increases. Note that an absolute value of the constant

term is larger in state 1 than in state 0 in these examples. High persistence of the state that generates a

large constant increases PMSE improvement by the bagging. However, given small values of p (for example,

p = 0.2) the improvement is larger as another Markov transition probability of state 0 conditional on state

0 at previous date is larger. That is, if state 1 is less persistent, the PMSE improvement by the bagging is

larger as persistence of state 0 increases.
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across different Markov transition probabilities is interrelated to magnitude of uncertainty

from the independent innovations. If the standard deviation of the independent innovation

term is smaller than that in the base parameter setting (for example, σ = 0.5) the rela-

tive performance of the bagged forecast estimators depends more on the Markov transition

probability of states as in Table 11.5

Third, percentage improvement in the PMSE when using the bagging is similar across

different parameter values of coefficient of the lagged dependent variable as in Table 8. Note

that non-dependency of coefficient on the state conditions is assumed in the model.

Percent Difference in PMSE by sample size of estimation: 
100x[PMSE(Bagging)-PMSE(Benchmark)]/PMSE(Benchmark)

Smoothed probability of states for random draws and for original residuals
M=100, r=1. Parameter values are those in the base parameter set.
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Parametric Bootstrap Residual Bootstrap

Figure 1: Percent difference in PMSE by sample size

Fourth, Figure 1 shows relative performance of the bagged forecast estimators by sample

size of estimation.6 Monte Carlo simulation results based on Markov switching models show

the bagging is also effective in large sample. A possible reason is that the nonlinearity comes

from regime shifts and is stochastic in Markov switching models. The uncertainty about

5If the standard deviation of the independent innovation is larger (for example, σ = 0.9) the magnitude

of PMSE improvement by the bagging does not vary much across different Markov transition probabilities

as in Table 12. Table 13 shows the results in smaller sample, T = 35. Table 10 compares the benchmark and

five bagging methods for different Markov transition probabilities of states.
6In Figure 1, plots are at sample sizes T = 35, 40, 50, 60, . . . , 140, 150, 200, 300, . . . , 1000. Sample sizes for

forecast evaluation M are set to 100. I use smoothed probability of states to randomly draw states for both

the parametric and the residual bootstrap, and to construct original residuals for the residual bootstrap.

In Tables 4, 5 and 6, I set long horizons and compare the performance of the benchmark and five bagging

methods for sample sizes T = 40, 150, and 500, respectively.
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nonlinearity exists regardless of sample size; hence, even in large sample. It implies that

the nonlinear forecasts are unstable even in large sample. The bagging reduces variances

of forecasts that stem from stochastic nonlinearity. Hence, as long as a Markov process for

primitive states generates nonlinearity, the bagging improves forecasts.

5 Application: Postwar Real GNP in the U.S.

I apply the above methods to the real GNP quarterly data in the United States. The data

come from Business Conditions Digest. The sample period is from the second quarter of

year 1951 to the fourth quarter of year 1984. The level of GNP is measured at an annual

rate in 1982 dollars. I let xt be the real GNP. ỹt = log (xt). For computational convenience,

I multiply 4ỹt by 100 in the estimation: yt = 100 × 4ỹt. The variable of yt is 100 times

the first difference in the log of real GNP. I set r = 4 as in Hamilton (1989) and study

out-of-sample one-step-ahead point forecasts.
One-step-ahead point forecasts: T=55
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Figure 2: Out-of-sample one-step-ahead forecast estimates: T = 55

Figure 2 compares (1) forecasts by the benchmark estimator, (2) bagged forecasts using

the parametric bootstrap with smoothed state probability for random draws, and (3) bagged

forecasts using the residual bootstrap with smoothed probability for random draws and

original residuals. Table 14, Table 15, Table 16, Table 17, and Table 18 in the appendix
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show the results of means, biases, variances, and PMSE for T = 45, 55, 65, 75, and 85,

respectively. Due to the variance reduction, the bagging improves forecasts in the sense of

the prediction mean squared error. Overall, the magnitude of improvement in the prediction

mean squared error by the bagging is larger in smaller sample. However, note that sample

sizes for forecast evaluation are not identical across these tables.

6 Conclusion

This paper proposes new variants of point forecast estimators in Markov switching models

utilizing bagging. To construct the bagged forecast estimators, I implement the parametric

bootstrap and the residual bootstrap to nonlinear dynamic models in which the nonlinearity

comes from the changes in non-independent stochastic components.

I conduct Monte Carlo experiments to compare performance of the bagged forecast es-

timators with that of the benchmark forecast estimator in the sense of the PMSE. The

Monte Carlo simulation results show that interactions between a Markov process for primi-

tive states and independent innovations affect the relative performance of the bagged forecast

estimators. First, the advantage to using the bagging becomes small when uncertainty of

the independent innovations is small. Second, if all primitive states are less persistent,

magnitude of the PMSE improvement by the bagging becomes small. Third, if uncertainty

from the independent innovations is smaller, relative performance of the bagged forecasts

depends more on the Markov transition probabilities. Fourth, the Monte Carlo simulations

present that the bagged forecast estimators dominate the benchmark forecast estimator even

in large sample. A possible reason is that the nonlinearity which comes from regime shifts,

is stochastic in Markov switching models. The nonlinear forecasts are unstable regardless of

sample size as long as the Markov process produces nonlinearity. Hence, the bagging reduces

forecast variances that stem from stochastic nonlinearity.

I also apply the bagged forecast estimators to study nonstationary time series of postwar

U.S. real GNP as in Hamilton (1989), where the first difference obeys a nonlinear stationary

process. The empirical evidence on out-of-sample forecasting presents that the bagged fore-

cast estimators outperform the benchmark forecast estimators by Hamilton (1989) in the

sense of the prediction mean squared error, due to the variance reduction.
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A Appendix: Model

Two primitive states are assumed for simplicity. The state at date t, st, depends on the

primitive states at date from t to rth lags (s∗t ,...,s
∗
t−r) and is independent of past observations

on ỹt. The constant term in Equation (1) becomes cst = α1s
∗
t +α0− φ1(α1s

∗
t−1 +α0)− · · · −

φr(α1s
∗
t−r + α0). To normalize, I set α1 > 0. In the estimation, I assume normality of the

innovation term εt. Let φ(L) = 1−φ1L−φ2L
2−· · ·−φrLr. I assume the stability condition

that all the roots of φ(z) = 0 are greater than 1 in absolute value.
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A.1 Discussion of the Model

z̃t is a driftless ARIMA(r,1,0) process whose first difference contains i.i.d.(0, σ2) innova-

tions. In contrast, nt is an ARIMA(1,1,0) process whose first difference contains the non-

independent white noise innovations.

A.1.1 Primitive State Process – Serial Dependence, Non-normality, and Strict

Stationarity

By the assumption of the first-order Markov process, the primitive state process is strictly

stationary, and is an AR(1) process with unusual probability distribution of the innovation

sequence.

s∗t = (1− q) + λs∗t−1 + υt, (15)

where λ = −1 + p + q. Thus, conditional on s∗t−1 = 1, υt = 1 − p with probability p,

and υt = −p with probability 1 − p. Conversely, conditional on s∗t−1 = 0, υt = q − 1 with

probability q, and υt = q with probability 1− q.
The innovation term, υt, is a white noise. That is, it is zero mean and serially un-

correlated: E(υt|s∗t−j) = 0, hence, E(υt) = 0, E(υts
∗
t−j) = 0 and E(υtυt−j) = 0 for

j = 1, 2, . . . . However, the innovation term, υt, is not independent of lagged value of the

primitive state. For instance, E(υ2t | s∗t−1) depends on s∗t−1 : E(υ2t | s∗t−1 = 1) = p(1− p) and

E(υ2t | s∗t−1 = 0) = q(1− q).
First, the innovation term, υt, cannot be normally distributed, whereas I suppose normal-

ity of the innovations in the other AR component, εt’s, in the estimation. Second, the serial

dependence of the system ỹt comes only from the innovation term in the Markov process,

υt. It is because the other innovation term of εt is i.i.d. and is independent of nt+j for all

j. The serial dependence of υt generates a nonlinear process for the observed series ỹt. The

best forecast is nonlinear because of this serial dependence.

Since the innovation term, υt, is a white noise, the primitive state process is covariance

stationary when |p+ q − 1| < 1. Moreover, the primitive state process is strictly stationary

because the joint distribution of the processes depends only on their relative distance. The

primitive state is strictly stationary when |p+q−1| = 1, too. But, in this case, the primitive

state is degenerated to be a constant, that is, a non-stochastic process, and the process of ỹt

becomes a usual ARIMA process whose first difference has i.i.d. innovations. The condition

such that |p+ q − 1| > 1 cannot be the case, because 0 ≤ p, q ≤ 1 hold.
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A.1.2 I(1) Process

Although the process of ỹt(= log(xt)) contains the special non-independent innovations, it

has the same property as the usual I(1) process. Information about the economy at an initial

point has no effect on the long run growth rate, and a permanent effect on the level. To see

it, let’s consider Beveridge-Nelson decomposition.

∆ỹt =

α0 + α1s
∗
t + zt

= α0 + α1
1−q
1−λ + ( 1

1−λLυt + 1
φ(L)

εt),

(16)

where φ(L) = 1−φ1L−φ2L
2−· · ·−φrLr. There exist ψ(L) = 1+ψ1L+ψ2L

2+· · · and a white

noise ut such that ( 1
1−λLυt + 1

φ(L)
εt) = ψ(L)ut. The ut is a white noise process, because the

innovation terms εt and υt are white noises and are independent of each other. I assume one

summability condition
∑∞
j=0 j|ψj| <∞. Using the following identity ψ(L) = ψ(1) + ∆β(L),

where ∆ = 1− L, β(L) =
∑∞
j=0 βjL

j, βj = −(ψj+1 + ψj+2 + · · ·), the process of ∆ỹt can be

rewritten as

∆ỹt = δ + ψ(1)ut + ηt − ηt−1, (17)

where δ = α0 + α1
1−q
1−λ . The process of ỹt is obtained as

ỹt = δ · t+
∑t
i=1 ui + ηt + (ỹ0 − η0). (18)

By the one summability assumption, β(L) is absolutely summable. Therefore, the third

term, ηt, is zero-mean covariance stationary. The first component, δ · t, is linear time trend.

The second component,
∑t
i=1 ui, is stochastic trend—that is, driftless random walk. The last

component, ỹ0− η0, is the initial condition. Here, implicitly, I assume that ut is a stationary

martingale difference sequence such that 0 < E(u2t ) < ∞ and 1
T

∑T
t=1E(u2t |ut−1, ut−2, · · ·)

converges in probability to E(u2t ).
7

Both components, nt and z̃t, contain stochastic trend, stationary process and the initial

condition. The nt term contains the linear time trend. While information about the economy

at date 0 has no effect on the long run growth rate of ỹt, it does exert a permanent effect on

the level. The permanent effect of the information differences between the states comes only

from the Markov trend term. Hence, when I compare certain knowledge about the initial

7Because the two innovation terms, εt and υt, are independent, I can analyze them separately. Since εt

is i.i.d., the assumptions for the property of the above stationary martingale difference sequence hold for its

component. As for υt, as t goes to infinity E(υ2t ) = πp(1− p) + (1− π)q(1− q), where π = 1−q
2−p−q , and the

assumptions for υt also seem to hold.
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states, I can focus on the effect of nt. The effect of the difference between these knowledge

sets is E[ỹt|s∗0 = 1]− E[ỹt|s∗0 = 0] −→ α1
λ

1−λ as t −→ ∞. E0xt|π0=1
E0xt|π0=0

−→ κ−(−1+p+q)
κ−exp(α1)(−1+p+q)

as t −→∞, where κ is a solution of κ(q + p exp(α1)− κ) = exp(α1)(−1 + p+ q).

B Appendix: PMSE

The population prediction mean squared error is population variance plus squared bias of

the forecast estimator. Let M denote a sample size for forecast evaluation. To simplify the

notation, E[.|yt+h] denotes E[.|yt+h,Yt; θ], and E[.] denotes E[.|Yt; θ] in this section. The

PMSE conditional on the target variable of yt+h is

E[(yt+h − ŷt+h)2|yt+h]
= E[{ŷt+h − E(ŷt+h|yt+h)}2|yt+h] + [E(ŷt+h − yt+h|yt+h)]2

= E[{ŷt+h − E(ŷt+h)}2] + [E(ŷt+h)− yt+h]2

= V ar(ŷt+h) + [Bias(ŷt+h|yt+h)]2.

(19)

The derivation from the second line to the third line in Equation (19) comes from the fact

that the forecast of ŷt+h is a function of the current and past data of Yt, and does not depend

on the target variable. The evaluation method removes randomness of the target variable

and accesses the PMSE from the forecasting errors only.

To obtain the sample PMSE corresponding to Equation (19), I calculate the sample

prediction variance by

ˆV ar(ŷt+h)

= 1
M

∑T+M−1
t=T [ŷt+h − 1

M

∑T+M−1
t=T ŷt+h]

2.
(20)

The sample prediction bias is obtained by

ˆBias(ŷt+h|yt+h)
= 1

M

∑T+M−1
t=T (ŷt+h − yt+h).

(21)

C Appendix: Monte Carlo Simulation

A few notes on the Monte Carlo simulation are as follows. First, in the Monte Carlo pro-

cedure, I use the same random draws of standard normal and uniform distributions across

different parameter settings. Given presumed parameter values, I obtain simulated data of

the longest sample size once, and use a part of them in the analysis for a smaller sample
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size. In other words, across different total sample sizes of simulated data, simulated data at

the overlapping dates are the same in an identical parameter setting.

Second, the first 499 simulated data are discarded. In other words, for estimation, fore-

casting, and the forecast evaluation, I use observations from the 500th simulated data.

Third, due to computational burden, for each combination of a sample size of estimation,

a sample size of forecast evaluation, and parameter setting, I conduct Monte Carlo simulation

once. Instead of many simulations, I let a time horizon be very long—that is, the sample

size of forecast evaluation is large, in some simulation experiments.

In the following tables, ‘Variance’ is sample prediction variance of a forecast from Equa-

tion (20). ‘Bias’ is sample prediction bias of a forecast from Equation (21). ‘Mean’ is sample

prediction mean of a forecast: 1
M

∑T+M−1
t=T ŷt+h. ‘Difference in PMSE’ denotes the percent-

age difference between the prediction mean squared error using the bagging and that in the

benchmark: 100× PMSEbagging−PMSEbenchmark

PMSEbenchmark
.

C.1 Hamilton Parameter Setting

Table 1: Monte Carlo Simulation

Benchmark

Type of Bootstrap Parametric Parametric Residual Residual Residual

T=40, M=1000, r=4. Parameter values are the same as in Hamilton (1989).

Bagging

yp p

State probability for draws smoothed inferred smoothed smoothed inferred

State probability for residuals smoothed inferred inferred

Mean 0.97333 0.99554 0.99361 0.99264 0.99014 0.99966

Bias -0 04650 -0 02430 -0 02622 -0 02720 -0 02969 -0 02018Bias -0.04650 -0.02430 -0.02622 -0.02720 -0.02969 -0.02018

Variance 1.90515 0.09806 0.22470 0.43796 0.41203 0.57132

PMSE 1.90731 0.09865 0.22539 0.43870 0.41291 0.57173

Difference in PMSE, % -94.83 -88.18 -77.00 -78.35 -70.02
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Table 2: Monte Carlo Simulation

Benchmark

Type of Bootstrap Parametric Parametric Residual Residual Residual

State probability for draws smoothed inferred smoothed smoothed inferred

State probability for residuals smoothed inferred inferred

Mean 1.00589 1.02557 1.02134 1.02364 1.03167 1.03876

Bias -0.01389 0.00580 0.00157 0.00386 0.01190 0.01899

Variance 1.65749 0.03942 0.35748 0.33684 0.33735 0.66216

PMSE 1.65768 0.03946 0.35748 0.33686 0.33749 0.66252

Difference in PMSE, % -97.62 -78.44 -79.68 -79.64 -60.03

T=150, M=1000, r=4. Parameter values are the same as in Hamilton (1989).

Bagging
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C.2 Base Parameter Setting

Table 4: Monte Carlo Simulation

Benchmark

Type of Bootstrap Parametric Parametric Residual Residual Residual

Bagging

T=40, M=1000, r=1. Parameter values are the same as in the base parameter set.

State probability for draws smoothed inferred smoothed smoothed inferred

State probability for residuals smoothed inferred inferred

Mean 1.00206 0.95953 0.84674 0.96408 1.07841 0.96204

Bias 0.03957 -0.00296 -0.11575 0.00159 0.11593 -0.00044Bias 0.03957 0.00296 0.11575 0.00159 0.11593 0.00044

Variance 0.10253 0.01660 0.04021 0.01494 0.01769 0.02446

PMSE 0.10410 0.01660 0.05361 0.01494 0.03113 0.02446

Difference in PMSE, % -84.05 -48.50 -85.65 -70.10 -76.50
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Table 5: Monte Carlo Simulation

Benchmark

Type of Bootstrap Parametric Parametric Residual Residual Residual

State probability for draws smoothed inferred smoothed smoothed inferred

State probability for residuals smoothed inferred inferred

Mean 0.99503 0.95755 0.85249 0.96150 1.06749 0.95948

Bias 0.03601 -0.00146 -0.10653 0.00248 0.10848 0.00047

Variance 0.08557 0.00767 0.02710 0.00433 0.00499 0.01328

PMSE 0.08687 0.00767 0.03845 0.00434 0.01676 0.01328

Difference in PMSE, % -91.17 -55.73 -95.01 -80.71 -84.71

Bagging

T=150, M=1000, r=1. Parameter values are the same as in the base parameter set. 

Table 6: Monte Carlo Simulation

Benchmark

Type of Bootstrap Parametric Parametric Residual Residual Residual

State probability for draws smoothed inferred smoothed smoothed inferred

State probability for residuals smoothed inferred inferred

Mean 0.98926 0.95265 0.84617 0.95525 1.06519 0.95389

Bias 0.03412 -0.00250 -0.10897 0.00010 0.11004 -0.00126

Variance 0.07954 0.00577 0.02506 0.00242 0.00125 0.01155

PMSE 0.08070 0.00577 0.03694 0.00242 0.01336 0.01155

Difference in PMSE, % -92.84 -54.23 -97.00 -83.45 -85.69

Bagging

T=500, M=1000, r=1. Parameter values are the same as in the base parameter set. 
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D Appendix: Application

Table 14: Real GNP in the U.S.

Benchmark

Type of Bootstrap Parametric Parametric Residual Residual Residual

State probability for draws smoothed inferred smoothed smoothed inferred

State probability for residuals smoothed inferred inferred

Mean 0.67980 0.75803 0.74745 0.73797 0.75698 0.74212

Bias -0.06623 0.01200 0.00143 -0.00806 0.01095 -0.00391

Variance 0.58287 0.12983 0.13386 0.16172 0.14801 0.14678

PMSE 0.58726 0.12997 0.13386 0.16179 0.14813 0.14679

Difference in PMSE, % -77.87 -77.21 -72.45 -74.78 -75.00

T (sample size of estimation) =45, M (sample size of forecast evaluation) =90, r (# lags) =4.

Bagging
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Table 15: Real GNP in the U.S.

Benchmark

Type of Bootstrap Parametric Parametric Residual Residual Residual

State probability for draws smoothed inferred smoothed smoothed inferred

State probability for residuals smoothed inferred inferred

Mean 0.78937 0.79537 0.81182 0.81094 0.78056 0.81182

Bias 0.08034 0.08635 0.10280 0.10192 0.07153 0.10280

Variance 0.32766 0.07483 0.08242 0.08353 0.08296 0.08242

PMSE 0.33411 0.08229 0.09299 0.09391 0.08807 0.09299

Difference in PMSE, % -75.37 -72.17 -71.89 -73.64 -72.17

T (sample size of estimation) =55, M (sample size of forecast evaluation) =80, r (# lags) =4. 

Bagging

Table 16: Real GNP in the U.S.

Benchmark

Type of Bootstrap Parametric Parametric Residual Residual Residual

State probability for draws smoothed inferred smoothed smoothed inferred

State probability for residuals smoothed inferred inferred

Mean 0.72385 0.75869 0.77920 0.75370 0.73408 0.72989

Bias 0.08960 0.12445 0.14496 0.11945 0.09983 0.09564

Variance 0.17170 0.06269 0.04530 0.06836 0.08738 0.04970

PMSE 0.17973 0.07818 0.06631 0.08262 0.09735 0.05885

Difference in PMSE, % -56.50 -63.11 -54.03 -45.84 -67.26

T (sample size of estimation) =65, M (sample size of forecast evaluation) =70, r (# lags) =4.

Bagging
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Table 17: Real GNP in the U.S.

Benchmark

Type of Bootstrap Parametric Parametric Residual Residual Residual

State probability for draws smoothed inferred smoothed smoothed inferred

State probability for residuals smoothed inferred inferred

Mean 0.71622 0.71737 0.76592 0.71105 0.69325 0.74687

Bias 0.09622 0.09738 0.14592 0.09105 0.07325 0.12687

Variance 0.13394 0.05238 0.05322 0.06364 0.06490 0.04660

PMSE 0.14319 0.06186 0.07452 0.07193 0.07027 0.06270

Difference in PMSE, % -56.80 -47.96 -49.77 -50.93 -56.21

T (sample size of estimation) =75, M (sample size of forecast evaluation) =60, r (# lags) =4.

Bagging

Table 18: Real GNP in the U.S.

B h k

T (sample size of estimation) =85, M (sample size of forecast evaluation) =50, r (# lags) =4.

B iBenchmark

Type of Bootstrap Parametric Parametric Residual Residual Residual

State probability for draws smoothed inferred smoothed smoothed inferred

State probability for residuals smoothed inferred inferred

Bagging

Mean 0.73161 0.74922 0.78627 0.73870 0.71612 0.75162

Bias 0.12444 0.14205 0.17910 0.13153 0.10895 0.14445

Variance 0.15789 0.07382 0.03621 0.07660 0.08826 0.04156

PMSE 0.17338 0.09400 0.06829 0.09390 0.10013 0.06243

Difference in PMSE, % -45.78 -60.61 -45.84 -42.25 -63.99
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