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Abstract

This paper improves convergence properties of asymmetric kernel density
estimators for nonnegative economic and �nancial variables via two classes of
multiplicative bias correction (�MBC�) techniques. It is demonstrated that
under su¢ cient smoothness of the true density, each MBC technique reduces
the order of magnitude in bias, whereas the order of magnitude in variance
remains unchanged. Accordingly, the mean integrated squared error of each
MBC estimator achieves a faster convergence rate of O

�
n�8=9

�
when best im-

plemented, where n is the sample size. Furthermore, the estimator always
generates a nonnegative density estimate by construction. Plug-in smoothing
parameter choice methods are also proposed to implement the MBC estimators
using the Gamma and Modi�ed Gamma kernels. Finite sample performance of
the estimators are examined via Monte Carlo simulations, and the estimators
are applied to estimating income distributions.
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1 Introduction

The aims of this paper are to improve convergence properties of kernel density estim-

ators for nonnegative economic and �nancial variables via a couple of bias correction

techniques, and to apply the proposed estimators for estimating income distributions.

Although we focus primarily on income distributions, our proposal is expected to �t

well with other distributions such as the loss distribution (= the distribution of a

payment to the insured) in actuarial science and �nancial risk management, the dis-

tribution of important �nancial variables such as short-term interest rates,1 and even

the baseline hazard in �nancial duration analysis.

To illustrate income distribution estimation, let fXigni=1 be a random sample

drawn from a univariate distribution with density f . Income distributions are em-

pirically characterized by two stylized facts, namely, (i) a natural boundary at the

origin (i.e. f has support on [0;1)) and (ii) a mode near the boundary and a long tail

with sparse data. To capture these stylized facts, researchers often �t log-normal and

Pareto distributions for the region near the boundary and the right tail, respectively.

However, the imposition of a misspeci�ed model leads to inconsistent estimates and

misleading inference, as well as to disputable evaluations of inequality measures.

This motivates us to adopt nonparametric kernel methods for their �exibility in

curve �tting. Nevertheless, standard kernel smoothing with symmetric kernels must

be modi�ed to accommodate the stylized facts. First, when the support of the density

has a boundary, boundary correction methods (e.g. Müller, 1991; Jones, 1993; Jones

and Foster, 1996; Zhang, Karunamuni and Jones, 1999; Hall and Park, 2002) should

1CIR (Cox, Ingersoll and Ross, 1985) and Ahn and Gao�s (1999) inverse Feller processes are
often used as data generating processes of short-term interest rates. It is known that time-invariant
distributions of these processes are gamma and inverse gamma distributions, respectively. These
distributions possess the same stylized facts as described shortly.
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be employed. Second, global smoothing with a single bandwidth may not work well.

If a short bandwidth is used to capture the mode near the origin, the density estimate

over the tail region tends to be wiggly. On the other hand, if a long bandwidth is

chosen to preserve the shape of the tail part, the mode near the origin is considerably

smoothed away. Variable bandwidth methods (e.g. Abramson, 1982; Terrell and

Scott, 1992) have been proposed as a remedy for this issue.

Recently, asymmetric kernel functions have emerged as a viable alternative to

boundary correction methods.2 For an asymmetric kernel function Kj(x;b) (�) indexed

by j that depends on a design point x > 0 and a smoothing parameter b > 0, the

density estimator can be expressed as

f̂j;b (x) =
1

n

nX
i=1

Kj(x;b) (Xi) : (1)

Throughout, Kj(x;b) (�) refers to the Gamma (�G�; Chen, 2000), Modi�ed Gamma

(�MG�; Chen, 2000), Inverse Gaussian (�IG�; Scaillet, 2004), Reciprocal Inverse

Gaussian (�RIG�; Scaillet, 2004), Log-Normal (�LN�; Jin and Kawczak, 2003),3 and

Birnbaum-Saunders (�BS�; Jin and Kawczak, 2003) kernels. Functional forms of

these kernels are presented in Table 1.

TABLE 1 AND FIGURE 1 ABOUT HERE

Asymmetric kernels can be viewed as a combination of a boundary correction

device and a �variable bandwidth�method. Because these kernels have support

2Strictly speaking, asymmetric kernel functions should be referred to as kernel-type weighting
functions. In a slightly di¤erent context, Gouriéroux and Monfort (2006) and Jones and Henderson
(2007) argue that unlike the cases of symmetric kernels, the roles of the data point X and the design
point x in asymmetric kernels are not exchangeable, which leads to lack of normalization in density
estimation using these kernels. Nevertheless, we follow the adopted convention in the literature for
these kernel-type functions.

3Our de�nition of the Log-Normal kernel slightly di¤ers from the original one in Jin and Kawczak
(2003). This de�nition ensures that the leading variance term of the density estimator (1) becomes
n�1b�1=2f (x) = (2

p
�x) for a design point x > 0 so that x=b!1 as b! 0.
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on [0;1), they eliminate boundary e¤ects by construction. Besides, the kernels

have a number of important advantages in the analysis of economic and �nancial

data. First, shapes of the asymmetric kernels vary according to the position at which

smoothing is made; in other words, the amount of smoothing changes in a locally

adaptive manner. Figure 1 plots shapes of six asymmetric kernels for four di¤erent

design points (x = 0:5, 1:0, 2:0, and 4:0), where the smoothing parameter value is

�xed at b = 0:4. The adaptive smoothing property in asymmetric kernels bears

some similarities to the variable bandwidth methods. However, a single smoothing

parameter su¢ ces for local adaptive smoothing, which makes asymmetric kernels

much more appealing in empirical work. Second, asymmetric kernels achieve the

optimal rate of convergence (in mean integrated squared error (�MISE�) sense) within

the class of nonnegative kernel estimators. Third, unlike the case with symmetric

kernels, the variances of asymmetric kernel estimators tend to decrease as the design

point moves away from the boundary. Note that the variance reduction for large x

is gained at the expense of increasing bias.

Provided that f is twice continuously di¤erentiable, for a design point x > 0 so

that x=b ! 1 as b ! 0, the leading bias and variance terms of the asymmetric

kernel density estimator (1) can be approximated by Bias
n
f̂j;b (x)

o
� a1;j (x; f) b

and V ar
n
f̂j;b (x)

o
� n�1b�1=2vj (x) f (x), where a1;j (x; f) is a kernel-speci�c function

that depends on x and derivatives of f (see Table 2 below for explicit forms), and

vj (x) =
1

2
p
�xrj

with rj =

8<:
1=2 for j = G;MG;RIG
1 for j = LN;BS
3=2 for j = IG

: (2)

Observe that vj (x) is proportional to x�rj , which is the source of shrinking variance

with the position of x. This property is equivalent to the strategy of using longer

bandwidths over the tail region where the data are sparse, and it is particularly
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advantageous for estimating income distributions.

Although asymmetric kernels are relatively new in the literature, several papers

report favorable evidence from applying them to empirical models in economics and

�nance. A non-exhaustive list includes: (i) estimation of recovery rate distributions

on defaulted bonds (Renault and Scaillet, 2004), (ii) income distribution estimation

(Bouezmarni and Scaillet, 2005; Hagmann and Scaillet, 2007); (iii) actuarial loss

distribution estimation (Hagmann and Scaillet, 2007; Gustafsson et al., 2009); (iv)

hazard estimation (Bouezmarni and Rombouts, 2008); (v) regression discontinuity

design (Fé, 2010); (vi) realized integrated volatility estimation (Kristensen, 2010);

and (vii) estimation of di¤usion models (Gospodinov and Hirukawa, 2012).

This paper demonstrates that the convergence rate of the asymmetric kernel dens-

ity estimator (1) can be improved via two classes of well-known bias correction tech-

niques. To be more speci�c, each technique leads the bias convergence to be accel-

erated to O (b2) under su¢ cient di¤erentiability of f , while the order of magnitude

in variance is maintained, i.e. the variance is still O
n�
nb1=2

��1o
if x=b ! 1, and

O
n�
nbrj+1=2

��1o
if x=b! � for some � > 0 and the kernel-speci�c exponent rj given

in (2). In the cases of symmetric second-order kernels, this kind of rate improve-

ments can be typically achieved by employing higher-order kernels.4 To the best of

our knowledge, equivalent techniques are yet to be proposed for asymmetric kernels;

if any, they would generate negative density estimates over some parts of the support,

which cause di¢ culty in interpretation in practice. Instead, the rate improvement

is attained by applying two classes of multiplicative bias correction (�MBC�) tech-

niques that are proposed by Terrell and Scott (1980) and Jones, Linton and Nielsen

4Jones and Foster (1993) provide an excellent review on the methods of generating higher-order
kernels from a given symmetric second-order kernel.
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(1995) originally for symmetric kernel density estimation.5 For each of two MBC

estimators, the MISE takes the form of O
�
b4 + n�1b�1=2

�
. Therefore, when best

implemented, each estimator can achieve the convergence rate of O
�
n�8=9

�
in MISE,

which is faster than O
�
n�4=5

�
, the MISE-optimal convergence rate within the class

of nonnegative kernel estimators. Besides, two MBC estimators still maintain the

same attractive properties as the bias-uncorrected estimator (1) has. They are free of

boundary bias and always generate nonnegative density estimates everywhere by con-

struction. Their variances still tend to decrease as the design point moves away from

the boundary. Moreover, to implement the two classes of MBC estimators employing

the Gamma and Modi�ed Gamma kernels, this paper proposes plug-in methods of

choosing the smoothing parameter b with a gamma density used as a reference.

In the closely related literature, Hagmann and Scaillet (2007) apply a semi-

parametric MBC technique in the spirit of Hjort and Jones (1996) (called local multi-

plicative bias correction (�LMBC�)) to asymmetric kernel density estimation. Gust-

afsson et al. (2009) propose another semi-parametric MBC technique called local

transformation bias correction (�LTBC�), which basically follows the idea of Rudemo

(1991). In both LMBC and LTBC, asymmetric kernels are employed at the bias

correction step after initial parametric density estimation. A key di¤erence is that

the bias correction is made for the original data in LMBC and for the data trans-

formed on the unit interval in LTBC. However, unlike the MBC estimators proposed

in this paper, neither LMBC nor LTBC improves the bias in order of magnitude.

Furthermore, Chen (1999) proposes another asymmetric kernel (the Beta kernel),

which yields a boundary-bias-free density estimator on the unit interval. Two MBC

5The forms of bias reductions achieved through MBC techniques are analogous between symmet-
ric and asymmetric kernel cases. However, none of asymmetric kernels can be expressed in the form
of K (�=b) =b, and thus it is worth emphasizing that mathematics and proof strategies for yielding
the results are totally di¤erent.
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techniques considered in this paper are shown to be applied for this kernel; see a

companion paper (Hirukawa, 2010) for details.

The remainder of this paper is organized as follows. Section 2 introduces two

classes of MBC density estimators and develops their asymptotic properties. Section

3 proposes plug-in methods of choosing the smoothing parameter b for Gamma kernel-

based MBC estimators, and conducts Monte Carlo simulations to check �nite sample

properties of the estimators. Section 4 applies the MBC estimators for estimating

income distributions from the U.S. and Brazilian data sets. Section 5 summarizes

the main results of the paper. All proofs are given in the Appendix.

This paper adopts the following notational conventions. � (�) =
R1
0
y��1 exp (�y) dy

(� > 0) denotes the gamma function. The expression �X d
= Y �reads �A random vari-

able X obeys the distribution Y .� Lastly, the expression �Xn � Yn�is used whenever

Xn=Yn ! 1 as n!1.

2 MBC Estimators Using Asymmetric Kernels

2.1 De�nitions of Two MBC Estimators

Two MBC techniques considered in this paper are subclasses of higher-order bias ker-

nel density estimation methods (Jones and Signorini, 1997), and these are originally

designed for symmetric kernels. We now extend the techniques to density estimation

using asymmetric kernels with support on [0;1).

In the spirit of Terrell and Scott (1980, abbreviated as �TS�hereafter), the �rst

class of MBC techniques constructs a multiplicative combination of two density estim-

ators employing the same kernel but di¤erent smoothing parameters. Let f̂j;b=c (x)

be the density estimator using asymmetric kernel j and smoothing parameter b=c,

where c 2 (0; 1) is some predetermined constant that does not depend on the design
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point x. Then, the TS-MBC asymmetric kernel density estimator can be de�ned as

~fTS;j (x) =
n
f̂j;b (x)

o 1
1�c
n
f̂j;b=c (x)

o� c
1�c

: (3)

TS originally proposed this method as an additive bias correction to the logarithms

of densities, and later it is generalized and reinterpreted as an MBC technique by

Koshkin (1988) and Jones and Foster (1993), respectively.

The second class of MBC techniques due to Jones, Linton and Nielsen (1995,

abbreviated as �JLN�hereafter) utilizes a single smoothing parameter b. In light of

the identity f (x) = f̂j;b (x)
n
f (x) =f̂j;b (x)

o
, the JLN-MBC asymmetric kernel density

estimator can be de�ned as

~fJLN;j (x) = f̂j;b (x)

(
1

n

nX
i=1

Kj(x;b) (Xi)

f̂j;b (Xi)

)
: (4)

Recognize that the term inside the bracket is a natural nonparametric estimator

of the bias-correction term f (x) =f̂j;b (x). This MBC technique is also applied in

nonparametric regression (Linton and Nielsen, 1994), hazard estimation (Nielsen,

1998; Nielsen and Tanggaard, 2001), and spectral matrix estimation (Xiao and Linton,

2002; Hirukawa, 2006).6 Also observe that both ~fTS;j (x) and ~fJLN;j (x) always

generate non-negative density estimates everywhere by construction.

2.2 Asymptotic Properties of MBC Estimators

2.2.1 Asymptotic Results

To develop convergence properties of MBC estimators, we make the following as-

sumptions:

6Because the correction term f (x) =f̂b (x) reminds us of prewhitening in time series analysis, this
bias correction technique is referred to as �nonparametric prewhitening�in Xiao and Linton (2002)
and Hirukawa (2006).
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Assumption 1. f has four continuous and bounded derivatives, and f (x) > 0 for

a given design point x > 0.

Assumption 2. The smoothing parameter b = bn satis�es b! 0 and nbrj+5=2 !1

as n!1.

The smoothness condition on f in Assumption 1 is standard for consistency of

density estimators using fourth-order kernels, whereas the positivity of f (x) is re-

quired for MBC. Assumption 2 implies that the convergence rate of the smoothing

parameter b is slower than O
�
n�1=(rj+5=2)

	
. We require this condition to control

the order of magnitude in remainder terms when approximating the bias of each

of TS- and JLN-MBC estimators. It will be shown shortly that the MSE-optimal

smoothing parameters for these estimators are b� = O
�
n�2=9

�
if the design point x

satis�es x=b ! 1, and that by = O
�
n�1=(rj+9=2)

	
if x=b ! � for some � > 0; these

convergence rates are indeed within the required range.

The approximation to the bias of each of two MBC estimators is built on a fourth-

order Taylor expansion of E
n
f̂j;b (x)

o
. Under Assumptions 1 and 2, we have

E
n
f̂j;b (x)

o
= f (x) + a1;j (x; f) b+ a2;j (x; f) b

2 + o
�
b2
�
;

where a1;j (x; f) and a2;j (x; f) are kernel-speci�c functions that depend on the design

point x and derivatives of f . Using properties of the random variable corresponding

to each kernel, we can specify explicit forms of a1;j (x; f) and a2;j (x; f) as in Table 2.

TABLE 2 ABOUT HERE

This paper refers to the position of x as �interior x�if x=b!1, and �boundary

x� if x=b ! �. We now present two theorems on the approximations to bias and

variance terms of two MBC estimators.
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Theorem 1. If Assumptions 1 and 2 hold, then the bias of the TS-MBC estimator

using kernel j can be approximated by

Bias
n
~fTS;j (x)

o
� 1

c (1� c)
pj (x) b

2 :=
1

c (1� c)

�
1

2

�
a21;j (x; f)

f (x)

�
� a2;j (x; f)

�
b2

for a1;j (x; f) and a2;j (x; f) in Table 2. For vj (x) and rj de�ned in (2), the variance

of the TS-MBC estimator can be approximated by

V ar
n
~fTS;j (x)

o
=

8<: n�1b�1=2� (c) vj (x) f (x) + o
n�
nb1=2

��1o
for interior x

O
n�
nbrj+1=2

��1o
for boundary x

;

where

� (c) =

�
1 + c5=2

�
(1 + c)1=2 � 2

p
2c3=2

(1 + c)1=2 (1� c)2
:

Theorem 2. If Assumptions 1 and 2 hold, then the bias of the JLN-MBC estimator

using kernel j can be approximated by

Bias
n
~fJLN;j (x)

o
� qj (x) b

2 := �f (x) a1;j (x; h) b2;

where a1;j (x; h) is obtained by replacing f = f (x) in a1;j (x; f) with

h = h (x; f) :=
a1;j (x; f)

f (x)
:

For vj (x) and rj de�ned in (2), the variance of the JLN-MBC estimator can be

approximated by

V ar
n
~fJLN;j (x)

o
=

8<: n�1b�1=2vj (x) f (x) + o
n�
nb1=2

��1o
for interior x

O
n�
nbrj+1=2

��1o
for boundary x

:

2.2.2 Discussions

Bias and Variance. Because the support of asymmetric kernels matches that of

the true density f , both TS- and JLN-MBC estimators are free of boundary bias.

More importantly, these estimators reduce the order of magnitude in bias from O (b)
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to O (b2), while their variances are O
n�
nb1=2

��1o
for interior x and O

n�
nbrj+1=2

��1o
for boundary x. Observe that orders of variances remain unchanged from those for the

corresponding bias-uncorrected estimator (1). We can also compare pj (x) and qj (x)

in leading bias terms with the corresponding ones for symmetric second-order kernels.

As stated in Jones and Signorini (1997, Sections 3.2-3.3), when the symmetric kernels

are employed, the term corresponding to pj (x) for TS-MBC is a linear combination

of f 0000 (x) and ff 00 (x)g2 =f (x), and the term corresponding to qj (x) for JLN-MBC

is proportional to f (x) ff 00 (x) =f (x)g00. The reason why pj (x) and qj (x) take more

complicated forms is that while odd-order moments of symmetric kernels are exactly

zero, those of asymmetric kernels around the design point x are often O (b) or O (b2).

As a result, extra density derivatives are included in pj (x) and qj (x).

The variance of JLN-MBC estimators is �rst-order asymptotically equivalent to

that of the corresponding bias-uncorrected estimator (1) for interior x. While the

LMBC density estimator by Hagmann and Scaillet (2007) also yields the same lead-

ing variance term, this technique does not reduce the bias in order of magnitude. In

contrast, when the JLN-MBC is applied for the density estimation using a symmet-

ric second-order kernel, the leading variance term tends to be larger (although not

in�ated in order of magnitude) because the multiplier in the variance term involves

the roughness (or squared integral) of the �twiced�kernel (Stuetzle and Mittal, 1979).

Moreover, since the multiplier � (c) in the variance for TS-MBC estimators is increas-

ing in c 2 (0; 1), ranging from 1 to 27/16, the variance of these estimators tends to be

larger than that of the bias-uncorrected estimator (1) for interior x. Lastly (but not

least importantly), the asymptotic variances of both TS- and JLN-MBC estimators

for interior x are proportional to x�rj , even after MBC is made. Therefore, MBC

estimators maintain the same appealing properties as the bias-uncorrected estimator
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has in estimating the distributions that have long tails with sparse data.

Mean Squared Error (�MSE�). For interior x, the MSEs of ~fTS;j (x) and ~fJLN;j (x)

can be approximated by

MSE
n
~fTS;j (x)

o
=

p2j (x)

c2 (1� c)2
b4 + n�1b�1=2� (c) vj (x) f (x) + o

�
b4 + n�1b�1=2

�
;

MSE
n
~fJLN;j (x)

o
= q2j (x) b

4 + n�1b�1=2vj (x) f (x) + o
�
b4 + n�1b�1=2

�
:

The MSE-optimal smoothing parameters are

b�TS;j =
�
c2 (1� c)2 � (c)

	2=9�vj (x) f (x)
8p2j (x)

�2=9
n�2=9;

b�JLN;j =

�
vj (x) f (x)

8q2j (x)

�2=9
n�2=9;

which yield the optimal MSEs

MSE�
n
~fTS;j (x)

o
� 9

88=9

 (c) p

2=9
j (x) fvj (x) f (x)g8=9 n�8=9;

MSE�
n
~fJLN;j (x)

o
� 9

88=9
q
2=9
j (x) fvj (x) f (x)g8=9 n�8=9;

where


 (c) =

(�
1 + c5=2

�
(1 + c)1=2 � 2

p
2c3=2

c1=4 (1 + c)1=2 (1� c)9=4

)8=9
:

Observe that the MSE-optimal smoothing parameters are O
�
n�2=9

�
= O (h�2), where

h� is the MSE-optimal bandwidth for fourth-order kernel estimators, or TS- or JLN-

MBC estimators using symmetric second-order kernels. As a result, the optimal

MSEs of ~fTS;j (x) and ~fJLN;j (x) for interior x become O
�
n�8=9

�
, as with MBC estim-

ation using the second-order kernels. The convergence rate is faster than O
�
n�4=5

�
,

the optimal convergence rate in the MSE of the corresponding bias-uncorrected es-

timator (1) for interior x. On the other hand, for boundary x, the MSEs of ~fTS;j (x)

and ~fJLN;j (x) are O
�
b4 + n�1b�(rj+1=2)

	
, which yields the MSE-optimal smoothing
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parameter by = O
�
n�1=(rj+9=2)

	
and the optimal MSE of O

�
n�4=(rj+9=2)

	
. The op-

timal convergence rate of MSEs is indeed faster than O
�
n�2=(rj+5=2)

	
, that of the

bias-uncorrected estimator for boundary x.

Global Property. The undesirable convergence rates over boundary regions do not

a¤ect the global properties of the MBC estimators. By the trimming argument in

Chen (2000), the MISEs of the MBC estimators are

MISE
n
~fTS;j (x)

o
=

b4

c2 (1� c)2

Z 1

0

p2j (x) dx

+n�1b�1=2� (c)

Z 1

0

vj (x) f (x) dx+ o
�
b4 + n�1b�1=2

�
;

MISE
n
~fJLN;j (x)

o
= b4

Z 1

0

q2j (x) dx+ n�1b�1=2
Z 1

0

vj (x) f (x) dx+ o
�
b4 + n�1b�1=2

�
;

provided that p2j (x), q
2
j (x), and vj (x) are integrable.

7 The MISE-optimal smoothing

parameters are then given by

b��TS;j =
�
c2 (1� c)2 � (c)

	2=9(R10 vj (x) f (x) dx

8
R1
0
p2j (x) dx

)2=9
n�2=9;

b��JLN;j =

(R1
0
vj (x) f (x) dx

8
R 1
0
q2j (x) dx

)2=9
n�2=9:

Therefore, the optimal MISEs become

MISE��
n
~fTS;j (x)

o
� 9

88=9

 (c)

�Z 1

0

p2j (x) dx

�2=9�Z 1

0

vj (x) f (x) dx

�8=9
n�8=9;

MISE��
n
~fJLN;j (x)

o
� 9

88=9

�Z 1

0

q2j (x) dx

�2=9�Z 1

0

vj (x) f (x) dx

�8=9
n�8=9:

Furthermore, the multiplier 
 (c) in the optimal MISE for the TS-MBC estimator is

minimized at c� � 0:2636; this value is exclusively considered in subsequent analyses.
7Throughout this paper, pMG (x) and qMG (x) refer to those for interior x (i.e. x � 2b), whenever

the integrated squared bias is considered.
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Normalization. Also observe that neither ~fTS;j (x) nor ~fJLN;j (x) integrates to one,

although the lack of normalization may be ignored in some applications. In general,

MBC leads to lack of normalization, even if symmetric second-order kernels are em-

ployed; see Section 2.2 of JLN, for example. It is easy to see that the order of

magnitude in the leading bias terms of renormalized TS- and JLN-MBC estimators

~fRTS;j (x) =
~fTS;j (x)R1

0
~fTS;j (x) dx

;

~fRJLN;j (x) =
~fJLN;j (x)R1

0
~fJLN;j (x) dx

remains unchanged. Because

E

�Z 1

0

~fTS;j (x) dx

�
= 1 +

b2

c (1� c)

Z 1

0

pj (x) dx+ o
�
b2
�
;

E

�Z 1

0

~fJLN;j (x) dx

�
= 1 + b2

Z 1

0

qj (x) dx+ o
�
b2
�
;

provided that pj (x) and qj (x) are integrable, the leading biases of ~fRTS;j (x) and

~fRJLN;j (x) become

Bias
n
~fRTS;1 (x)

o
� 1

c (1� c)

�
pj (x)�

Z 1

0

pj (x) dx

�
b2;

Bias
n
~fRJLN;1 (x)

o
�

�
qj (x)�

Z 1

0

qj (x) dx

�
b2:

The leading variances are una¤ected.

2.3 Further Bias Reduction via Iteration

In principle, further bias reduction is possible after the regularity conditions are prop-

erly strengthened. Constructing a multiplicative combination of (s+ 1) di¤erent

density estimators, we can extend the TS-MBC estimator to

~f
(s)
TS;j (x) =

sY
r=0

n
f̂j;b=cr (x)

o�s;r
;

13



where c0 � 1, c1; : : : ; cs 2 (0; 1) are mutually di¤erent constants, and the exponent is

�s;r =
(�1)s csr
sQ

p=0;p6=r
(cp � cr)

:

Similarly, the sth iterated JLN-MBC estimator can be de�ned as

~f
(s)
JLN;1 (x) =

~f
(s�1)
JLN;j (x)

(
1

n

nX
i=1

Kj(x;b) (Xi)

~f
(s�1)
JLN;j (Xi)

)
;

where ~f (0)JLN;j (x) � f̂j;b (x). Provided that the true density f is 2 (s+ 1) times con-

tinuously di¤erentiable, for each of these estimators, it can be shown that the order

of magnitude in bias is O (bs+1) while the order of magnitude in variance remains

unchanged from that of the corresponding bias-uncorrected estimator f̂j;b (x). In

particular, it can be shown that V ar
n
~f
(s)
JLN;j (x)

o
is �rst-order asymptotically equi-

valent to V ar
n
~f
(0)
JLN;j (x)

o
= V ar

n
f̂j;b (x)

o
for interior x. As a result, their optimal

MSEs are O
�
n�(4s+4)=(4s+5)

	
and O

�
n�(2s+2)=(2s+3)

	
for interior and boundary x, re-

spectively. Accordingly, as the number of iterations increases, the global convergence

rate of iterated MBC estimators can be arbitrarily close to the parametric one when

best implemented. However, it is doubtful whether there is much gain in practice

from these estimators, and thus we do not pursue this issue any further.

3 Finite Sample Performance

3.1 Monte Carlo Setup

We evaluate the �nite sample performance of two classes of MBC estimators via Monte

Carlo simulations. For estimators involving asymmetric kernels, we concentrate on

the Gamma and Modi�ed Gamma kernels due to their popularity in the literature.

This simulation study compares of the following �ve classes of estimators: (i) bias-

uncorrected estimators (1) [G, MG]; (ii) LMBC estimator with a gamma start and

14



a log-linear correction factor in Hagmann and Scaillet (2007) [LMBC-G]; (iii) LTBC

estimator with the generalized Champernowne start8 and a log-linear correction factor

in Gustafsson et al. (2009) [LTBC-C]; (iv) TS-MBC estimators (3) [TS-MBC-G, TS-

MBC-MG]; and (vi) JLN-MBC estimators (4) [JLN-MBC-G, JLN-MBC-MG]. The

value of the constant c in each TS-MBC estimator is set equal to the MISE-optimal

c� = 0:2636. Ten true distributions are considered, as listed in Table 3. All these

distributions are popularly chosen as models for the income distribution, the loss

distribution and the baseline hazard. For each distribution, 1; 000 data sets of sample

size n = 100, 200 or 500 are simulated. All density estimates are evaluated on an

equally spaced grid of 500 points over the interval [0; 5]. Following Gustafsson et al.

(2009), for each estimator �f , we compute three performance measures, namely, the

integrated absolute deviation (�IAD�), the root integrated squared error (�RISE�),

and the root weighted integrated squared error (�RWISE�), where

IAD
�
�f (x)

	
=

Z 1

0

�� �f (x)� f (x)
�� dx;

RISE
�
�f (x)

	
=

sZ 1

0

�
�f (x)� f (x)

	2
dx;

RWISE
�
�f (x)

	
=

sZ 1

0

�
�f (x)� f (x)

	2
x2dx:

IAD and RISE measure the error between the true and estimated densities with equal

weights across the support, whereas RWISE focuses on the �t of the tail part. In

our reports, the integrals are approximated over the 500 points.

TABLE 3 ABOUT HERE

8The density of the generalized Champernowne distribution (Buch-Larsen et al., 2005) is

f (x;�;M; c) =
� (x+ c)

��1 f(M + c)
� � c�g

f(x+ c)� + (M + c)
� � 2c�g2

; x � 0

with parameters � > 0, M > 0 and c � 0.

15



3.2 Choices of Smoothing Parameters

Choosing the smoothing parameter b is an important practical issue. To exped-

ite computations, as in Hirukawa (2010), we develop plug-in methods for TS- and

JLN-MBC estimators that use a gamma density as a reference. The plug-in smooth-

ing parameters for ~fTS;MG (x) and ~fJLN;G (x) (called �gamma-referenced smoothing

parameters�hereafter) are de�ned as the minimizers of asymptotic weighted mean

integrated squared errors (�AWMISEs�)

b̂GR�TS = argmin
b
AWMISE

n
~fTS;MG (x)

o
= argmin

b

b4

c2 (1� c)2

Z 1

0

~p2MG (x)wTS (x) dx+
n�1b�1=2� (c)

2
p
�

Z 1

0

g (x)p
x
wTS (x) dx;

b̂GR�JLN = argmin
b
AWMISE

n
~fJLN;G (x)

o
= argmin

b
b4
Z 1

0

~q2G (x)wJLN (x) dx+
n�1b�1=2

2
p
�

Z 1

0

g (x)p
x
wJLN (x) dx;

where g (x) = x��1 exp (�x=�) = f��� (�)g is the density function for the gamma

distribution with parameters (�; �), and ~pMG (x) and ~qG (x) can be obtained by re-

placing f (x) in pMG (x) and qG (x) with g (x). The weighting functions are chosen

as wTS (x) = x5 and wJLN (x) = x to ensure �niteness of integrals. The parameters

(�; �) are replaced by their estimates
�
�̂; �̂

�
via method of moments or maximum

likelihood (�ML�).9 Analytical expressions of b̂GR�TS and b̂GR�JLN , as well as b̂GR (=

the gamma-referenced smoothing parameter for f̂MG (x)), are given in the Appendix.

We do not pursue the gamma-referenced smoothing parameter for ~fTS;G (x); since

extra terms are involved in pG (x), the minimizer of its AWMISE takes a much more

complicated form than b̂GR�TS. On the other hand, although it is possible to derive

9ML estimates are used exclusively in this paper.
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the gamma-referenced smoothing parameter for ~fJLN;MG (x) in a similar way,10 our

preliminary simulation results indicate that the formula frequently generates large

values and thus we do not advocate its use. From the viewpoint of practical relev-

ance, b̂GR�TS and b̂GR�JLN are simply employed for ~fTS;G (x) and ~fJLN;MG (x) in our

simulations, respectively. Similarly, b̂GR is chosen as the smoothing parameter for

f̂G (x).

Besides, a very simple formula is frequently applied in the literature (e.g. Gust-

afsson et al., 2009). From this viewpoint, a �rule-of-thumb�smoothing parameter

is also considered for each estimator. More precisely, we additionally employ: (i)

b̂ROT1 = �̂xn
�2=5 for G, MG and LMBC-G11; (ii) b̂ROT2 = �̂un

�2=5 for LTBC-C; and

(iii) b̂ROT3 = �̂xn
�2=9 for TS-MBC-G, TS-MBC-MG, JLN-MBC-G, and JLN-MBC-

MG, where �̂x and �̂u are sample standard deviations of the original data and the

transformed data on the unit interval, respectively.

TABLE 4 AND FIGURE 2 ABOUT HERE

3.3 Simulation Results

Table 4 reports simulation averages and standard deviations of performance meas-

ures. The gamma-referenced method in general works better than the rule-of-thumb

method for a given estimator, and it often substantially reduce the values of perform-

ance measures.12 Therefore, the table presents the results from the gamma-referenced

method for all estimators other than two semiparametric estimators (i.e. LMBC-G

10Choosing x5 as the weighting function, we can derive the smoothing parameter as

argmin
b
b4
Z 1

0

~q2MG (x)x
5dx+

n�1b�1=2

2
p
�

Z 1

0

g (x)p
x
x5dx =

(
4��9=2� (�+ 9=2) � (�)

4
p
� (�� 1)2 (�� 2)2 � (2�)

)2=9
n�2=9:

11Although Hagmann and Scaillet (2007) employ the cross validation method for LMBC-G, we
adopt the simple plug-in rule to speed up computations.
12Exceptions are Distributions 3 and 4, but gains from the rule-of-thumb method are marginal.
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and LTBC-C); in fact, only the rule-of-thumb method is chosen for these estimators.

For each distribution, results are qualitatively similar across three sample sizes.

Comparing TS- and JLN-MBC estimators with their corresponding bias-uncorrected

estimators, we can see that JLN-MBC estimators often improve all three performance

measures, whereas results are mixed for TS-MBC estimators. JLN-MBC outperforms

TS-MBC in most cases; only a few exceptions include RISEs for Distributions 5, 7.

This �nding is consistent with the simulation results reported in Jones and Signorini

(1997). In addition, even when the two semiparametric estimators perform better in

terms of overall performance measures (i.e. IAD and RISE), JLN-MBC is competitive

with them in terms of the performance measure for the tail (i.e. RWISE); see the

results for Distributions 5, 6, 7, for instance.

Results do not con�rm that for a given estimator, employing the Modi�ed Gamma

kernel improves performance measures over the Gamma kernel. A rationale can be

found in Figure 1. The Gamma kernel put the maximum weight on the design

point x whereas the Modi�ed Gamma not, which explains why the Modi�ed Gamma

estimators may not outperform the Gamma estimators globally. In particular, TS-

MBC-MG consistently performs inferiorly to TS-MBC-G, except Distribution 5. The

poor performance of TS-MBC-MG can be attributed to the following two respects.

First, TS-MBC estimation relies on two smoothing parameters b and b=c. Controlling

both b and b=c is a cumbersome task. Because 0 < c < 1, the density estimator

using b=c tends to be oversmoothed, which is potentially a source of a large bias

in every TS-MBC estimator. On the other hand, if we make b too short in order

to have a reasonable length of b=c, additional variability is introduced to the other

estimator using b due to undersmoothing. Second, when the Modi�ed Gamma kernel

is employed, these two smoothing parameters also play a role of determining the
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boundary region explicitly (e.g. [0; 2b) for the density estimator using b). Unless b

is short enough, there is a relatively small interior region for the density estimator

using b=c. This aspect is also thought to worsen the performance measures of TS-

MBC-MG. In conclusion, when TS-MBC estimation is applied, it is desirable to use a

smoothing parameter choice method that tends to provide a small value consistently.

Our experiment indicates that for a given distribution and a given sample size, b̂GR�TS

on average yields a smaller value than b̂ROT3 does, which explains why the former is

preferable in general for TS-MBC estimation over the latter.

It is also worth remarking that performance of the two semiparametric estimators

depends on the shape of the distribution. Due to its gamma start, LMBC-G performs

well when the distribution looks like the gamma one (e.g. Distributions 1, 2, 7, 8).

On the other hand, because the generalized Champernowne distribution is designed

to capture the tail of the underlying distribution, the performance of LTBC-C is

remarkable for medium- to heavy-tailed distributions (e.g. Distributions 5, 6, 9,

10). However, LMBC-G for Distributions 3 and 4 and LTBC-C for Distributions 1-4

perform inferiorly. To con�rm these �ndings, we now inspect average plots of their

density estimates.

Figure 2 presents average plots of density estimates from G, LMBC-G, LTBC-

C, TS-MBC-G, and JLN-MBC-G against the true density for selected distributions.

The plots are obtained from 1,000 Monte Carlo samples with sample size n = 100, and

the average for each estimator is taken over 1,000 replications for each grid. For each

distribution, the left and right panels correspond to the average plots over the region

near the origin and the tail part, respectively. Panels (a) and (d) indicate that LMBC-

G and LTBC-C can capture the shapes of Weibull and Pareto distributions nearly

perfectly, respectively. In contrast, as suggested by Panel (a), LTBC-C imprecisely
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captures the shape near the origin of such a distribution as Distribution 1 or 2.

Moreover, Distributions 3 and 4 satisfy so-called the shoulder condition f 0 (0+) = 0.

In this case, local concavity of the true density around the origin tends to force the

gamma and generalized Champernowne starts to generate a spurious peak near the

origin (see Panel (b)), which leads to the poor performance of LMBC-G and LTBC-

C. Likewise, local convexity of the true density around the origin in Distribution 6

makes the gamma start for LMBC-G unbounded at zero. Panel (d) indicates that

the unboundedness cannot be corrected even after the bias correction step.

We can also see from Figure 2 that if G underestimates (overestimates) the density,

JLN-MBC-G corrects the estimate in an upward (downward) direction, as reported in

Hirukawa (2006, 2010); such a bias correction mechanism is not obvious for TS-MBC-

G. Both of TS-MBC-G and JLN-MBC-G can trace out entire shapes of a variety

of distributions at a satisfactory level; the chances that they mistakenly capture the

shapes would be low, unlike the two semiparametric estimators. While JLN-MBC-G

performs superiorly to TS-MBC-G in terms of the three performance measures, it

appears that the latter is better at capturing heights of the peaks of distributions

than the former. The �gure also demonstrates that both estimators can preserve

the shapes of tail parts equally well. Overall, simulation results indicate that MBC

estimators are viable alternatives to the two semiparametric estimators.

4 Applications to Income Data

4.1 Case #1: U.S. Data

In this section, the MBC density estimators are applied to a couple of income data

sets. Our �rst application focuses on the U.S. income data. We use the data set

studied in Abadie (2003), which includes 9,275 observations from the 1991 Survey of
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Income and Program Participation (SIPP). The data set is available under the name

�401ksubs.raw�on the web site for Wooldridge (2001), and the variable �inc�(=

annual income, in thousands of dollars) is examined in this section.

Table 5 presents descriptive statistics of the data, including some inequality meas-

ures, where the data is converted to dollars. Although sample moments and quantiles

suggest a right-skewed distribution, it appears that the tail is not extremely heavy.

This is con�rmed by the Hill plot (= a plot of tail index estimates by Hill, 1975)

of the data up until the 1,000th observation from the largest (unreported), which

indicates that estimates of the tail index roughly ranges from 4 to 5, except initial

few estimates.

TABLE 5 AND FIGURE 3 ABOUT HERE

The income distribution is estimated by G, LMBC-G, TS-MBC-G, and JLN-

MBC-G. The original data is converted to 105 dollars, and then the resulting density

estimates are back-transformed to the ones denominated in dollars. At the initial

step, we �t a gamma density g (x) = x��1 exp (�x=�) = f��� (�)g to the converted

data by ML, and obtain parameter estimates
�
�̂; �̂

�
= (3:158; 0:124). Then, plug-in

smoothing parameters b̂GR, b̂ROT1, b̂GR�TS, and b̂GR�JLN are chosen for G, LMBC-G,

TS-MBC-G, and JLN-MBC-G, respectively; their values are 0.0030, 0.0062, 0.0071,

and 0.0354. Given these numbers, we can draw Figure 3. For reference, the �gure

presents shapes around the mode (Panel (b)) and on the tail (Panel (c)), as well

as the entire shape (Panel (a)). The �gure suggests that while estimates from G

and TS-MBC-G are almost indistinguishable, the ones from the remaining two are

considerably di¤erent, in particular, in terms of the location and height of the mode;

see Panel (b) for details. Moreover, a closer look at Panel (c) �nds that the wiggle
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over the tail generated by G is substantially smoothed away by JLN-MBC-G; this

kind of smoothing mechanism is not observed in TS-MBC-G.

4.2 Case #2: Brazilian Data

Our second application employs the Brazilian income data in 1990. The large mi-

cro data set (n = 71; 523) is collected via the annual National Household Survey

(PNAD) by the Brazilian Statistical O¢ ce, and it has been also analyzed in Hag-

mann and Scaillet (2007). Using similar data sets, Cowell, Ferreira and Litch�eld

(1998) investigate the dynamics of the Brazilian income distribution in 1980s. The

data considered is monthly per capita denominated in 1990 cruzeiros. Analyzing this

data set is of particular interest, because Brazil has the eighth largest GDP in the

world and faces a strong inequality in the income distribution.

Table 6 presents descriptive statistics of the data. The income distribution is

empirically known to have a single sharp peak near the origin and a long right tail.

Indeed, sample moments and quantiles reveal an extremely right-skewed distribution.

The Hill plot of the data up until the 8,000th observation from the largest suggests

that estimates of the tail index roughly range from 1.6 to 3, except initial few estim-

ates. Inequality measures much larger than those from the U.S. data also re�ect the

long, thick tail.

TABLE 6 AND FIGURE 4 ABOUT HERE

As in the previous section, the income distribution is estimated by G, LMBC-G,

TS-MBC-G, and JLN-MBC-G. Again, the original data is converted to 105 cruzeiros,

and then the resulting density estimates are back-transformed to the ones denomin-

ated in cruzeiros. Fitting a gamma density g (x) = x��1 exp (�x=�) = f��� (�)g to

the converted data yields ML estimates
�
�̂; �̂

�
= (0:887; 0:588). Computing values
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of smoothing parameters b̂GR, b̂ROT1, b̂GR�TS, and b̂GR�JLN as 0.0050, 0.0104, 0.0246,

and 0.0533, we can obtain Figure 4. Although the value of �̂ implies that unlike the

U.S. case, the data would hint an income distribution unbounded at zero, the estimate

from LMBC-G does not con�rm this gesture. Because of quite a few observations,

it seems that there is a consensus on the shape among estimators, except that of the

mode. G generates the highest peak. JLN-MBC-G substantially smooths out the

mode, and as a result, the peak is lowest. LMBC-G and TS-MBC-G yield a similar

shape around the mode, and the height of the peak is in-between. On the other hand,

a careful investigation of Panel (c) reveals that G and LMBC-G generate wiggles over

the tail, whereas two MBC estimators smooth them out thoroughly.

5 Conclusion

This paper has demonstrated that two well-known MBC techniques designed origin-

ally for symmetric kernels can be applied to density estimation using asymmetric

kernels that have support on [0;1). Under su¢ cient smoothness of the true density,

both bias reduction methods are shown to improve the order of magnitude in bias

from O (b) to O (b2), while the order of magnitude in variance remains unchanged.

Two classes of MBC density estimators are by construction nonnegative, and establish

a faster convergence rate of O
�
n�8=9

�
in MSE for the interior part when best imple-

mented, as with symmetric second-order kernels. Monte Carlo simulations indicate

superior performance of JLN-MBC estimators in particular, compared to correspond-

ing bias-uncorrected estimators. The MBC estimators are applied to estimating

income distributions from the U.S. and Brazilian data.
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A Appendix

The proof of each theorem requires kernel-speci�c arguments, which include Taylor

expansions and properties of the random variable corresponding to the kernel. To

save space, we present only the proofs when the Gamma kernel is employed.

A.1 Proof of Theorem 1

This proof closely follows the one for Theorem 1 of Hirukawa (2010).

Bias. Applying the �rst equation on p.489 of Hirukawa (2010), we can approximate

E
n
~fTS;G (x)

o
= f (x)+

1

c (1� c)

�
1

2

�
a21;G (x; f)

f (x)

�
� a2;G (x; f)

�
b2+o

�
b2
�
+O

�
n�1b�1

�
;

where the remainder term O (n�1b�1) = o (b2) by Assumption 2.

Variance. The variance of ~fTS;G (x) can be expressed as

V ar
n
~fTS;G (x)

o
=

1

(1� c)2

h
V ar

n
f̂G;b (x)

o
� 2cCov

n
f̂G;b (x) ; f̂G;b=c (x)

o
+ c2V ar

n
f̂G;b=c (x)

oi
+O

�
n�1

�
:

For interior x, a similar argument to the one in the proof for Theorem 1 of Hirukawa

(2010) yields

V ar
n
f̂G;b (x)

o
= n�1b�1=2vG (x) f (x) + o

�
n�1b�1=2

�
;

V ar
n
f̂G;b=c (x)

o
= n�1b�1=2c1=2vG (x) f (x) + o

�
n�1b�1=2

�
;

Cov
n
f̂G;b (x) ; f̂G;b=c (x)

o
= n�1b�1=2

p
2c1=2

(1 + c)1=2
vG (x) f (x) + o

�
n�1b�1=2

�
:

Then, the result immediately follows.

On the other hand, for boundary x, each of V ar
n
f̂G;b (x)

o
, V ar

n
f̂G;b=c (x)

o
and

Cov
n
f̂G;b (x) ; f̂G;b=c (x)

o
is at most O

�
(nb)�1

	
. Therefore, the stated order of mag-

nitude is also established. �
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A.2 Proof of Theorem 2

This proof closely follows the one for Theorem 2 of Hirukawa (2010). To approximate

the variance, the following two lemmata are required:

Lemma 1. Suppose that Assumptions 1 and 2 hold. Let

&j (u) =
2Kj(x;b) (u)

f (u)
� 1

n

nX
i=1

Kj(x;b) (Xi)Kj(Xi;b) (u)

f 2 (Xi)
:

Then,

&j (u) � �j (u) = �j
Kj(x;b) (u)

f (u)
;

where

�j =

8>>>>><>>>>>:

�
1 if u=b!1
2� �

�
�1=2

�
if u=b! �

for j = G;MG;RIG

1 for j = LN;BS(
1 if ub! 0

2� �
�
�1=2

�
if ub! ��1

for j = IG

for some � > 0.

Lemma 2. Suppose that Assumptions 1 and 2 hold. Let X > 0 be drawn from the

distribution with density f (x) having support on [0;1). Then, the transformation

�j (�) de�ned in Lemma 1 can be approximated by

E
�
�2j (X)

	
=

�
b�1=2vj (x) =f (x) + o

�
b�1=2

�
for interior x

O
�
b�(rj+1=2)

	
for boundary x

;

where vj (x) and rj are de�ned in Theorem 1 .

A.2.1 Proof of Lemma 1

It su¢ ces to demonstrate that

1

n

nX
i=1

KG(x=b+1;b) (Xi)KG(Xi=b+1;b) (u)

f 2 (Xi)
�
KG(x=b+1;b) (u)

f (u)
�
�
1 if u=b!1
�
�
�1=2

�
if u=b! �

:
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Let  G (y) := KG(x=b+1;b) (y) =f (y). Then, for an arbitrarily large n, we can approx-

imate (1=n)
Pn

i=1KG(x=b+1;b) (Xi)KG(Xi=b+1;b) (u) =f
2 (Xi) by

E

�
KG(x=b+1;b) (X1)KG(X1=b+1;b) (u)

f 2 (X1)

�
=

Z 1

0

 G (y)
uy=b exp (�u=b)
by=b+1� (y=b+ 1)

dy: (A1)

Now,

uy=b exp (�u=b)
by=b+1� (y=b+ 1)

= exp
n�y

b

�
log u� u

b
� log y �

�y
b

�
log b� log �

�y
b

�o
;

where

log �
�y
b

�
=

�
y

b
� 1
2

�
log y �

�
y

b
� 1
2

�
log b� y

b
+
1

2
log 2� +

b

12y
+O

�
b3
�

by Stirling�s approximation. Then, the right-hand side of (A1) can be approximated

by

b�1=2p
2�

Z 1

0

 G (y)p
y
exp

��y
b

�
(log u� log y)�

�
u� y

b

�
� b

12y
+O

�
b3
��

dy: (A2)

By a change of variable w = (u� y) =b1=2 and Taylor expansions for the logarithm

and exponential functions, (A2) can be further rewritten as

1p
2�

Z u=b1=2

�1

 G
�
u� b1=2w

�
(u� b1=2w)

1=2

� exp
��

u� b1=2w

b

��
log u� log

�
u� b1=2w

�	
� b�1=2w � b

12 (u� b1=2w)
+O

�
b3
��
dw

=
1p
2�

Z u=b1=2

�1

 G
�
u� b1=2w

�
(u� b1=2w)

1=2
exp

�
�w

2

2u

�
�
�
1� b1=2w3

6u2
� bw4

12u3
� b

12u
+

bw6

72u4
+O

�
b3=2

��
dw: (A3)

Take another change of variable v = w=
p
u, and let � (�) and � (�) denote the standard

normal density and distribution functions, respectively. Then, (A3) reduces toZ pu=b

�1
 G
�
u� b1=2

p
uv
�� u

u� b1=2
p
uv

�1=2
� (v)

�
�
1� b1=2v3

6
p
u
� bv4

12u
� b

12u
+
bv6

72u
+O

�
b3=2

��
dv

�
KG(x=b+1;b) (u)

f (u)
�
�
1 if u=b!1
�
�
�1=2

�
if u=b! �

: �
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A.2.2 Proof of Lemma 2

Pick � = b1�� for some � 2 (0; 1=2). Then, by the trimming argument in Chen (2000),

E
�
�2G (X)

	
=

Z �

0

+

Z 1

�

�2G (u) f (u) du = Ab (x)

Z 1

0

KG(2x=b+1;b=2) (u)

f (u)
du+O

�
b��
�
;

where

Ab (x) =
b�1� (2x=b+ 1)

22x=b+1�2 (x=b+ 1)
�
(

b�1=2

2
p
�x1=2

if x=b!1
�(2�+1)b�1

22�+1�2(�+1)
if x=b! �

:

The stated result follows from recognizing thatZ 1

0

KG(2x=b+1;b=2) (u)

f (u)
du = E

�
f�1 (�x)

	
= f�1 (x) + o (1) ;

where �x
d
= G (2x=b+ 1; b=2). �

A.2.3 Proof of Theorem 2

Bias. Write h (x) = a1;G (x; f) =f (x). By the procedures in Section A.2.1 of

Hirukawa (2010, pp.490-491) and properties of gamma random variables, we can

recognize that

E
n
~fJLN;G (x)

o
= f (x)�f (x)

n
h0 (x) +

x

2
h00 (x)

o
b2+o

�
b2
�
= f (x)�f (x) a1;G (x; h) b2+o

�
b2
�
:

Variance. Following the procedures in Section A.2.2 of Hirukawa (2010, p.492), we

can obtain

~fJLN;G (x) � f (x)
1

n

nX
i=1

KG(x=b+1;b) (Xi)

f (Xi)

(
2� f̂G;b (Xi)

f (Xi)

)
;

where

1

n

nX
i=1

KG(x=b+1;b) (Xi)

f (Xi)

(
2� f̂G;b (Xi)

f (Xi)

)
=
1

n

nX
i=1

&G (Xi)

for &G (�) de�ned in Lemma 1. Lemma 1 implies that &G (Xi) can be approximated

by an iid random variable �G (Xi), and thus

V ar
n
~fJLN;G (x)

o
� f 2 (x)

1

n
V ar f�G (X1)g = f 2 (x)

�
1

n
E
�
�2G (X1)

	
+O

�
n�1

��
:

Finally, applying Lemma 2 completes the proof. �
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A.3 Formulae for Gamma-Referenced Smoothing Paramet-
ers

The analytical expression of b̂GR�TS is

b̂GR�TS =
�
c2 (1� c)2 � (c)

	2=9(4��9=2� (�+ 9=2) � (�)
16
p
�CTS (�) � (2�)

)2=9
n�2=9;

where

CTS (�) =
1

36
(�� 2)2

�
�� 3

2

�2
(�� 1)2

�1
6
(�� 2)

�
�� 3

2

�
(�� 1)2 (�)

�
�+

1

2

�
+
1

9
(�� 2)

�
�� 3

2

�
(�� 1) (�)

�
�+

1

2

�
(�+ 1)

+
1

4
(�� 1)2 (�)

�
�+

1

2

�
(�+ 1)

�
�+

3

2

�
�1
3
(�� 1) (�)

�
�+

1

2

�
(�+ 1)

�
�+

3

2

�
(�+ 2)

+
1

9
(�)

�
�+

1

2

�
(�+ 1)

�
�+

3

2

�
(�+ 2)

�
�+

5

2

�
:

On the other hand, b̂GR�JLN takes a much simpler form. It is given by

b̂GR�JLN =

(
4��5=2� (�+ 1=2) � (�)

4
p
�� (2�)

)2=9
n�2=9:

Moreover, the gamma-referenced smoothing parameter for f̂MG (x) is de�ned as

b̂GR = argmin
b
AWMISE

n
f̂MG (x)

o
= argmin

b

b2

4

Z 1

0

x2 fg00 (x)g2w (x) dx+ n�1b�1=2

2
p
�

Z 1

0

g (x)p
x
w (x) dx;

where the weighting function w (x) is chosen as w (x) = x3 to ensure �niteness of

integrals. It follows that b̂GR can be expressed as

b̂GR =

(
4��5=2� (�+ 5=2) � (�)

8
p
�C (�) � (2�)

)2=5
n�2=5;
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where

C (�) =
1

4
(�� 2)2 (�� 1)2 � (�� 2) (�� 1)2 (�) + 1

2
(�� 1) (3�� 4) (�)

�
�+

1

2

�
� (�� 1) (�)

�
�+

1

2

�
(�+ 1) +

1

4
(�)

�
�+

1

2

�
(�+ 1)

�
�+

3

2

�
: �
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Table 1: Functional Forms of Asymmetric Kernels
Kernel (j) Functional Form (u � 0)

G KG(x=b+1;b) (u) = ux=b exp (�u=b) =
�
bx=b+1� (x=b+ 1)

	
MG KMG(�b(x);b) (u) = u�b(x)�1 exp (�u=b) =

�
b�b(x)� f�b (x)g

�
;

where �b (x) =
�
x=b for x � 2b
(1=4) (x=b)2 + 1 for x 2 [0; 2b)

IG KIG(x;1=b) (u) =
1p
2�bu3

exp
�
� 1
2bx

�
u
x
� 2 + x

u

�	
RIG KRIG(1=(x�b);1=b) (u) =

1p
2�bu

exp
�
�x�b

2b

�
u
x�b � 2 +

x�b
u

�	
LN KLN(log x;b) (u) =

1
u
p
2�b
exp

n
� (log u�log x)2

2b

o
BS KBS(b1=2;x) (u) =

1
2x
p
2�b

n�
x
u

�1=2
+
�
x
u

�3=2o
exp

�
� 1
2b

�
u
x
� 2 + x

u

�	
Table 2: Explicit Forms of a1;j (x; f) and a2;j (x; f)

Kernel (j) a1;j (x; f) a2;j (x; f)

G f 0 (x) + x
2
f 00 (x) f 00 (x) + 5

6
xf 000 (x) + x2

8
f 0000 (x)

MG
�

x
2
f 00 (x) for x � 2b
�b (x) f

0 (x) for x 2 [0; 2b) ;

�
x
3
f 000 (x) + x2

8
f 0000 (x) for x � 2b

1
2

�
�2b (x) + �b (x) +

x
b

	
f 00 (x) for x 2 [0; 2b)

where �b (x) = �b (x)� x
b
= O (1)

IG x3

2
f 00 (x) x5

2
f 000 (x) + x6

8
f 0000 (x)

RIG x
2
f 00 (x) 1

2
f 00 (x) + x

2
f 000 (x) + x2

8
f 0000 (x)

LN x
2
f 0 (x) + x2

2
f 00 (x) x

8
f 0 (x) + 7

8
x2f 00 (x) + 3

4
x3f 000 (x) + x4

8
f 0000 (x)

BS x
2
f 0 (x) + x2

2
f 00 (x) 3

4
x2f 00 (x) + 3

4
x3f 000 (x) + x4

8
f 0000 (x)

Table 3: True Distributions Considered in Monte Carlo Simulations
Distribution Density Function f (x) ; x � 0

1. Gamma x��1 exp (�x=�) = f��� (�)g ; (�; �) = (1:5; 1) :
2. Weibull (�=�) (x=�)��1 exp f� (x=�)�g ; (�; �) = (1:5; 1:5) :
3. Half-Normal 2p

2��
exp

n
� (x��)2

2�2

o
; (�; �) = (0; 1:5) :

4. Half-Logisitic
�
2
s

�
exp

�
�
�
x��
s

�	
=
�
1 + exp

�
�
�
x��
s

�	�2
; (�; s) = (0; 1) :

5. Log-Normal 1
x
p
2��
exp

n
� (log x��)2

2�2

o
; (�; �) = (0; 0:75) :

6. Pareto ���= (x+ �)�+1 ; (�; �) = (1; 2) :

7. Burr ��x��1= (1 + x�)�+1 ; (�; �) = (1:5; 2:5) :
8. Generalized Gamma 
x��1 exp f� (x=�)
g =��� (�=
) ; (�; �; 
) = (5; 2; 2:5) :
9. Log-Normal and p

h
1

x
p
2��
exp

n
� (log x��)2

2�2

oi
+ (1� p)

n
���

(x+�)�+1

o
;

Pareto Mixture 1 (p; �; �; �; �) = (0:7; 0; 0:5; 1; 2) :

10. Log-Normal and p
h

1
x
p
2��
exp

n
� (log x��)2

2�2

oi
+ (1� p)

n
���

(x+�)�+1

o
;

Pareto Mixture 2 (p; �; �; �; �) = (0:3; 0; 0:5; 1; 2) :
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Table 4: Averages and Standard Deviations of Performance Measures
(Distributions 1 and 2)

Estimator IAD RISE RWISE IAD RISE RWISE IAD RISE RWISE

G 0.02581 0.03816 0.04787 0.02015 0.03058 0.03668 0.01464 0.02307 0.02624
(0.00861) (0.01227) (0.01737) (0.00652) (0.00966) (0.01281) (0.00419) (0.00662) (0.00823)

MG 0.02651 0.03858 0.05253 0.02044 0.03026 0.03974 0.01460 0.02195 0.02827
(0.00927) (0.01192) (0.02090) (0.00685) (0.00911) (0.01516) (0.00430) (0.00596) (0.00960)

LMBC­G 0.02348 0.03422 0.04386 0.01771 0.02600 0.03289 0.01234 0.01837 0.02300
(0.00846) (0.01301) (0.01666) (0.00620) (0.00948) (0.01228) (0.00388) (0.00630) (0.00774)

LTBC­C 0.02877 0.04478 0.05020 0.02202 0.03509 0.03776 0.01564 0.02593 0.02645
(0.00954) (0.01417) (0.01917) (0.00681) (0.01017) (0.01336) (0.00425) (0.00654) (0.00846)

TS­MBC­G 0.02622 0.03940 0.04893 0.01981 0.03085 0.03579 0.01391 0.02302 0.02428
(0.00904) (0.01318) (0.01879) (0.00675) (0.01018) (0.01348) (0.00428) (0.00695) (0.00855)

TS­MBC­MG 0.02708 0.04084 0.05058 0.02039 0.03167 0.03697 0.01426 0.02307 0.02511
(0.00920) (0.01271) (0.01959) (0.00671) (0.00927) (0.01400) (0.00421) (0.00587) (0.00884)

JLN­MBC­G 0.02322 0.03647 0.04108 0.01779 0.02948 0.03040 0.01267 0.02278 0.02071
(0.00862) (0.01302) (0.01646) (0.00648) (0.00995) (0.01213) (0.00423) (0.00694) (0.00772)

JLN­MBC­MG 0.02403 0.03845 0.04127 0.01857 0.03154 0.03039 0.01345 0.02467 0.02070
(0.00825) (0.01043) (0.01663) (0.00605) (0.00754) (0.01215) (0.00380) (0.00472) (0.00760)

G 0.02678 0.03985 0.04856 0.02082 0.03137 0.03795 0.01503 0.02288 0.02766
(0.00931) (0.01384) (0.01819) (0.00646) (0.00996) (0.01295) (0.00451) (0.00682) (0.00910)

MG 0.02755 0.03964 0.05342 0.02102 0.03047 0.04102 0.01491 0.02160 0.02944
(0.00949) (0.01307) (0.02065) (0.00677) (0.00932) (0.01511) (0.00448) (0.00610) (0.00997)

LMBC­G 0.02484 0.03697 0.04420 0.01876 0.02805 0.03391 0.01313 0.01969 0.02420
(0.00919) (0.01421) (0.01692) (0.00610) (0.00970) (0.01155) (0.00411) (0.00636) (0.00825)

LTBC­C 0.02955 0.04596 0.05182 0.02264 0.03579 0.03999 0.01605 0.02599 0.02825
(0.01036) (0.01569) (0.02007) (0.00716) (0.01145) (0.01409) (0.00447) (0.00690) (0.00909)

TS­MBC­G 0.02761 0.04143 0.05005 0.02059 0.03129 0.03740 0.01422 0.02188 0.02577
(0.00986) (0.01502) (0.01946) (0.00666) (0.01039) (0.01349) (0.00456) (0.00691) (0.00918)

TS­MBC­MG 0.02834 0.04209 0.05229 0.02098 0.03145 0.03882 0.01441 0.02179 0.02662
(0.00985) (0.01440) (0.02022) (0.00675) (0.00983) (0.01416) (0.00443) (0.00620) (0.00939)

JLN­MBC­G 0.02387 0.03650 0.04137 0.01830 0.02861 0.03161 0.01302 0.02102 0.02239
(0.00983) (0.01490) (0.01738) (0.00671) (0.01050) (0.01199) (0.00474) (0.00718) (0.00877)

JLN­MBC­MG 0.02404 0.03846 0.03970 0.01827 0.03019 0.02968 0.01291 0.02225 0.02061
(0.00863) (0.01203) (0.01654) (0.00584) (0.00811) (0.01126) (0.00382) (0.00497) (0.00793)

(continued)

Distribution #2: Weibull

n = 100 n = 200 n = 500

Distribution #1: Gamma
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Table 4: Continued (Distributions 3 and 4)

Estimator IAD RISE RWISE IAD RISE RWISE IAD RISE RWISE

G 0.02480 0.03708 0.04472 0.01946 0.02914 0.03530 0.01387 0.02115 0.02534
(0.00874) (0.01305) (0.01696) (0.00627) (0.00964) (0.01205) (0.00408) (0.00623) (0.00827)

MG 0.02669 0.03971 0.05043 0.02062 0.03085 0.03915 0.01458 0.02225 0.02780
(0.00937) (0.01491) (0.01951) (0.00682) (0.01084) (0.01400) (0.00441) (0.00700) (0.00959)

LMBC­G 0.02603 0.04441 0.04184 0.01983 0.03372 0.03258 0.01379 0.02383 0.02310
(0.00945) (0.01690) (0.01576) (0.00659) (0.01177) (0.01134) (0.00409) (0.00730) (0.00759)

LTBC­C 0.02744 0.04260 0.04651 0.02091 0.03267 0.03541 0.01485 0.02355 0.02554
(0.01028) (0.01679) (0.01786) (0.00748) (0.01302) (0.01240) (0.00566) (0.01110) (0.00888)

TS­MBC­G 0.02511 0.03809 0.04434 0.01891 0.02851 0.03366 0.01276 0.01951 0.02304
(0.00974) (0.01547) (0.01781) (0.00690) (0.01110) (0.01238) (0.00437) (0.00687) (0.00849)

TS­MBC­MG 0.02768 0.04308 0.04782 0.02061 0.03192 0.03610 0.01392 0.02183 0.02473
(0.01031) (0.01773) (0.01895) (0.00736) (0.01262) (0.01341) (0.00464) (0.00787) (0.00919)

JLN­MBC­G 0.02208 0.03267 0.03936 0.01686 0.02489 0.03051 0.01167 0.01729 0.02157
(0.00942) (0.01434) (0.01711) (0.00693) (0.01059) (0.01275) (0.00430) (0.00657) (0.00826)

JLN­MBC­MG 0.02162 0.03251 0.03660 0.01629 0.02465 0.02782 0.01117 0.01722 0.01913
(0.00937) (0.01481) (0.01587) (0.00670) (0.01080) (0.01134) (0.00418) (0.00685) (0.00733)

G 0.02397 0.03452 0.04481 0.01874 0.02710 0.03530 0.01339 0.01969 0.02539
(0.00844) (0.01216) (0.01677) (0.00620) (0.00911) (0.01235) (0.00409) (0.00597) (0.00851)

MG 0.02532 0.03644 0.05041 0.01959 0.02834 0.03913 0.01390 0.02049 0.02785
(0.00916) (0.01400) (0.01972) (0.00675) (0.01028) (0.01455) (0.00441) (0.00670) (0.01005)

LMBC­G 0.02457 0.04005 0.04194 0.01865 0.03025 0.03251 0.01291 0.02130 0.02292
(0.00912) (0.01596) (0.01599) (0.00642) (0.01114) (0.01149) (0.00402) (0.00687) (0.00787)

LTBC­C 0.02685 0.04093 0.04633 0.02043 0.03118 0.03571 0.01412 0.02195 0.02493
(0.01018) (0.01645) (0.01793) (0.00704) (0.01145) (0.01277) (0.00459) (0.00773) (0.00884)

TS­MBC­G 0.02387 0.03453 0.04457 0.01792 0.02584 0.03368 0.01209 0.01770 0.02296
(0.00944) (0.01429) (0.01786) (0.00681) (0.01040) (0.01275) (0.00436) (0.00650) (0.00880)

TS­MBC­MG 0.02618 0.03931 0.04731 0.01945 0.02916 0.03556 0.01315 0.01998 0.02422
(0.01003) (0.01683) (0.01887) (0.00727) (0.01212) (0.01366) (0.00460) (0.00759) (0.00942)

JLN­MBC­G 0.02093 0.03019 0.03826 0.01588 0.02292 0.02923 0.01086 0.01587 0.02013
(0.00912) (0.01354) (0.01654) (0.00663) (0.01010) (0.01182) (0.00419) (0.00635) (0.00781)

JLN­MBC­MG 0.02110 0.03027 0.03790 0.01589 0.02295 0.02873 0.01088 0.01605 0.01964
(0.00917) (0.01394) (0.01624) (0.00663) (0.01026) (0.01169) (0.00423) (0.00658) (0.00783)

(continued)

Distribution #4: Half­Logistic

n = 100 n = 200 n = 500

Distribution #3: Half­Normal
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Table 4: Continued (Distributions 5 and 6)

Estimator IAD RISE RWISE IAD RISE RWISE IAD RISE RWISE

G 0.03241 0.05338 0.04884 0.02537 0.04239 0.03763 0.01832 0.03127 0.02675
(0.00966) (0.01530) (0.01658) (0.00682) (0.01121) (0.01165) (0.00484) (0.00805) (0.00794)

MG 0.03106 0.04690 0.05380 0.02373 0.03623 0.04115 0.01695 0.02625 0.02916
(0.01100) (0.01652) (0.01996) (0.00781) (0.01206) (0.01410) (0.00537) (0.00868) (0.00948)

LMBC­G 0.02534 0.03937 0.04252 0.01947 0.03074 0.03215 0.01401 0.02261 0.02250
(0.00900) (0.01403) (0.01656) (0.00614) (0.00957) (0.01144) (0.00442) (0.00719) (0.00786)

LTBC­C 0.02853 0.04721 0.04542 0.02163 0.03626 0.03420 0.01551 0.02641 0.02410
(0.01065) (0.01764) (0.01837) (0.00681) (0.01170) (0.01196) (0.00428) (0.00738) (0.00749)

TS­MBC­G 0.03126 0.05085 0.04983 0.02392 0.04030 0.03679 0.01715 0.03044 0.02480
(0.00977) (0.01557) (0.01822) (0.00671) (0.01104) (0.01230) (0.00465) (0.00776) (0.00809)

TS­MBC­MG 0.02949 0.04496 0.05132 0.02200 0.03393 0.03793 0.01503 0.02342 0.02559
(0.01008) (0.01584) (0.01903) (0.00705) (0.01109) (0.01283) (0.00474) (0.00790) (0.00835)

JLN­MBC­G 0.03121 0.05656 0.04158 0.02491 0.04682 0.03147 0.01857 0.03661 0.02201
(0.00866) (0.01397) (0.01441) (0.00619) (0.01018) (0.01012) (0.00434) (0.00698) (0.00686)

JLN­MBC­MG 0.03482 0.06361 0.04563 0.02809 0.05344 0.03517 0.02108 0.04207 0.02498
(0.00899) (0.01327) (0.01575) (0.00653) (0.00997) (0.01092) (0.00462) (0.00751) (0.00736)0.0132684

G 0.03696 0.09475 0.03309 0.02954 0.07801 0.02542 0.02173 0.05865 0.01828
(0.01109) (0.03207) (0.01076) (0.00807) (0.02363) (0.00785) (0.00522) (0.01539) (0.00527)

MG 0.04168 0.08360 0.04994 0.03193 0.06493 0.03754 0.02217 0.04523 0.02593
(0.01352) (0.02722) (0.01791) (0.00892) (0.01938) (0.01140) (0.00479) (0.01149) (0.00631)

LMBC­G 0.02515 0.07257 0.02849 0.01993 0.06229 0.02121 0.01529 0.05188 0.01496
(0.00880) (0.03237) (0.01114) (0.00669) (0.02597) (0.00800) (0.00508) (0.02065) (0.00546)

LTBC­C 0.02604 0.06495 0.02601 0.01969 0.04940 0.01987 0.01395 0.03484 0.01420
(0.00999) (0.02871) (0.01059) (0.00662) (0.01927) (0.00745) (0.00707) (0.01671) (0.00679)

TS­MBC­G 0.03173 0.07971 0.03069 0.02543 0.06773 0.02275 0.01921 0.05443 0.01584
(0.01225) (0.03562) (0.01146) (0.00912) (0.02749) (0.00815) (0.00602) (0.01829) (0.00535)

TS­MBC­MG 0.05906 0.11707 0.06751 0.05020 0.10405 0.05380 0.04019 0.08893 0.03954
(0.02082) (0.03067) (0.03707) (0.01541) (0.02371) (0.02462) (0.00924) (0.01636) (0.01288)

JLN­MBC­G 0.03053 0.07616 0.02850 0.02441 0.06376 0.02138 0.01831 0.04988 0.01510
(0.00915) (0.02600) (0.01046) (0.00680) (0.01967) (0.00731) (0.00446) (0.01330) (0.00494)

JLN­MBC­MG 0.04037 0.10432 0.03655 0.03325 0.09053 0.02823 0.02544 0.07398 0.02011
(0.00977) (0.02352) (0.01086) (0.00713) (0.01784) (0.00734) (0.00442) (0.01149) (0.00451)

(continued)

Distribution #6: Pareto

n = 100 n = 200 n = 500

Distribution #5: Log­Normal
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Table 4: Continued (Distributions 7 and 8)

Estimator IAD RISE RWISE IAD RISE RWISE IAD RISE RWISE

G 0.02962 0.06226 0.03435 0.02309 0.04983 0.02657 0.01668 0.03685 0.01906
(0.00909) (0.02063) (0.01080) (0.00656) (0.01557) (0.00773) (0.00463) (0.01097) (0.00531)

MG 0.03053 0.06159 0.03867 0.02342 0.04778 0.02949 0.01649 0.03360 0.02077
(0.01007) (0.02013) (0.01288) (0.00731) (0.01475) (0.00932) (0.00482) (0.00987) (0.00601)

LMBC­G 0.02567 0.05274 0.03060 0.01920 0.03949 0.02315 0.01328 0.02719 0.01626
(0.00903) (0.02188) (0.01027) (0.00609) (0.01503) (0.00717) (0.00416) (0.00971) (0.00499)

LTBC­C 0.02984 0.06927 0.03104 0.02246 0.05283 0.02344 0.01573 0.03752 0.01653
(0.01032) (0.02484) (0.01171) (0.00682) (0.01663) (0.00805) (0.00438) (0.01039) (0.00525)

TS­MBC­G 0.02899 0.06260 0.03413 0.02200 0.04951 0.02535 0.01553 0.03695 0.01730
(0.00951) (0.02243) (0.01134) (0.00652) (0.01629) (0.00785) (0.00465) (0.01156) (0.00534)

TS­MBC­MG 0.02967 0.06355 0.03543 0.02235 0.04894 0.02631 0.01560 0.03518 0.01789
(0.00984) (0.02114) (0.01196) (0.00688) (0.01466) (0.00832) (0.00454) (0.00930) (0.00545)

JLN­MBC­G 0.02798 0.06759 0.02809 0.02246 0.05801 0.02149 0.01704 0.04786 0.01536
(0.00898) (0.02098) (0.00965) (0.00642) (0.01607) (0.00670) (0.00461) (0.01150) (0.00475)

JLN­MBC­MG 0.02765 0.06627 0.02792 0.02230 0.05736 0.02115 0.01696 0.04745 0.01488
(0.00905) (0.01481) (0.01076) (0.00662) (0.01026) (0.00771) (0.00441) (0.00679) (0.00502)

G 0.02875 0.03846 0.09656 0.02226 0.03010 0.07596 0.01584 0.02175 0.05447
(0.01022) (0.01360) (0.03499) (0.00722) (0.00982) (0.02597) (0.00467) (0.00654) (0.01697)

MG 0.02857 0.03792 0.09891 0.02217 0.02972 0.07775 0.01575 0.02141 0.05541
(0.01014) (0.01329) (0.03695) (0.00725) (0.00966) (0.02746) (0.00469) (0.00647) (0.01782)

LMBC­G 0.02314 0.03110 0.07623 0.01755 0.02367 0.05814 0.01242 0.01688 0.04148
(0.00960) (0.01307) (0.03207) (0.00674) (0.00923) (0.02373) (0.00443) (0.00619) (0.01567)

LTBC­C 0.03100 0.04358 0.10924 0.02398 0.03344 0.08365 0.01752 0.02418 0.05973
(0.01038) (0.01573) (0.03970) (0.00726) (0.01121) (0.02827) (0.00526) (0.00843) (0.01993)

TS­MBC­G 0.02925 0.04048 0.10045 0.02174 0.03015 0.07524 0.01486 0.02074 0.05137
(0.00996) (0.01426) (0.03649) (0.00694) (0.01006) (0.02629) (0.00449) (0.00658) (0.01695)

TS­MBC­MG 0.02946 0.04065 0.10183 0.02190 0.03027 0.07628 0.01496 0.02078 0.05198
(0.00995) (0.01416) (0.03692) (0.00698) (0.01001) (0.02670) (0.00453) (0.00657) (0.01727)

JLN­MBC­G 0.02655 0.03656 0.09626 0.02084 0.02892 0.07698 0.01516 0.02121 0.05743
(0.00916) (0.01174) (0.03084) (0.00650) (0.00850) (0.02366) (0.00427) (0.00572) (0.01587)

JLN­MBC­MG 0.02451 0.03376 0.08451 0.01906 0.02652 0.06676 0.01346 0.01903 0.04819
(0.00803) (0.01056) (0.02825) (0.00544) (0.00727) (0.02036) (0.00349) (0.00492) (0.01369)

(continued)

Distribution #8: Generalized Gamma

n = 100 n = 200 n = 500

Distribution #7: Burr
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Table 4: Continued (Distributions 9 and 10)

Estimator IAD RISE RWISE IAD RISE RWISE IAD RISE RWISE

G 0.03273 0.05493 0.04978 0.02607 0.04448 0.03868 0.01891 0.03297 0.02751
(0.01038) (0.01681) (0.01766) (0.00760) (0.01239) (0.01276) (0.00533) (0.00901) (0.00855)

MG 0.03537 0.05600 0.05766 0.02749 0.04423 0.04380 0.01978 0.03232 0.03122
(0.01237) (0.01790) (0.02441) (0.00893) (0.01346) (0.01648) (0.00581) (0.00913) (0.01030)

LMBC­G 0.03328 0.06093 0.04671 0.02685 0.04991 0.03695 0.02002 0.03783 0.02727
(0.01140) (0.02112) (0.01650) (0.00871) (0.01555) (0.01286) (0.00615) (0.01105) (0.00896)

LTBC­C 0.03090 0.05722 0.04487 0.02391 0.04620 0.03344 0.01746 0.03567 0.02362
(0.00972) (0.01691) (0.01659) (0.00705) (0.01245) (0.01206) (0.00444) (0.00839) (0.00757)

TS­MBC­G 0.03104 0.05286 0.04583 0.02422 0.04263 0.03410 0.01772 0.03244 0.02368
(0.01042) (0.01708) (0.01773) (0.00768) (0.01268) (0.01269) (0.00514) (0.00879) (0.00815)

TS­MBC­MG 0.03383 0.05579 0.05325 0.02566 0.04319 0.03909 0.01837 0.03131 0.02766
(0.01372) (0.01991) (0.03012) (0.00944) (0.01442) (0.01771) (0.00593) (0.00944) (0.01049)

JLN­MBC­G 0.03527 0.06194 0.04853 0.02959 0.05328 0.03941 0.02295 0.04296 0.02937
(0.00969) (0.01597) (0.01479) (0.00705) (0.01155) (0.01082) (0.00477) (0.00800) (0.00740)

JLN­MBC­MG 0.03411 0.05945 0.04931 0.02798 0.05017 0.03921 0.02178 0.04032 0.02968
(0.01075) (0.01732) (0.01826) (0.00801) (0.01301) (0.01341) (0.00524) (0.00851) (0.00864)

G 0.03035 0.06028 0.03903 0.02370 0.04917 0.02978 0.01731 0.03698 0.02168
(0.01012) (0.01911) (0.01361) (0.00693) (0.01391) (0.01028) (0.00438) (0.00973) (0.00692)

MG 0.03179 0.05814 0.04909 0.02465 0.04576 0.03715 0.01776 0.03323 0.02613
(0.00951) (0.01718) (0.02032) (0.00634) (0.01277) (0.01326) (0.00418) (0.00889) (0.00815)

LMBC­G 0.02630 0.05372 0.03569 0.02016 0.04180 0.02725 0.01504 0.03072 0.02023
(0.00941) (0.02555) (0.01273) (0.00677) (0.01884) (0.00958) (0.00442) (0.01170) (0.00667)

LTBC­C 0.02809 0.05777 0.03439 0.02109 0.04409 0.02572 0.01512 0.03192 0.01841
(0.01008) (0.02282) (0.01344) (0.00704) (0.01654) (0.00955) (0.00466) (0.01093) (0.00654)

TS­MBC­G 0.02691 0.05156 0.03683 0.02074 0.04218 0.02737 0.01574 0.03360 0.01978
(0.01020) (0.01898) (0.01428) (0.00668) (0.01328) (0.01039) (0.00407) (0.00896) (0.00679)

TS­MBC­MG 0.03684 0.07109 0.04938 0.02996 0.06054 0.03705 0.02337 0.04991 0.02660
(0.01412) (0.02206) (0.03264) (0.00898) (0.01555) (0.01737) (0.00528) (0.01103) (0.00834)

JLN­MBC­G 0.02603 0.05059 0.03504 0.02097 0.04268 0.02719 0.01669 0.03516 0.02042
(0.00727) (0.01314) (0.01240) (0.00491) (0.00960) (0.00923) (0.00332) (0.00683) (0.00633)

JLN­MBC­MG 0.02824 0.06236 0.03374 0.02415 0.05516 0.02671 0.02040 0.04744 0.02101
(0.00670) (0.01166) (0.01234) (0.00460) (0.00788) (0.00877) (0.00335) (0.00533) (0.00579)

Note : Numbers in parentheses are simulation standard deviations.

Distribution #10: Log­Normal and Pareto Mixture 2

n = 100 n = 200 n = 500

Distribution #9: Log­Normal and Pareto Mixture 1
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Table 5: Descriptive Statistics of the U.S. Income Data
Descriptive statistics: Quantiles: Inequality measures:
Sample size 9,275 5% 12,837 Coe¢ cient of variation 0.61
Mean 39,255 10% 15,300 Gini coe¢ cient 0.32
Standard deviation 24,090 25% 21,660 Theil index 0.16
Skewness 1.60 50% 33,288 Mean log deviation 0.17
Kurtosis 6.68 75% 50,163
Minimum 10,008 90% 70,878
Maximum 199,041 95% 88,074

Table 6: Descriptive Statistics of the Brazilian Income Data
Descriptive statistics: Quantiles: Inequality measures:
Sample size 71,523 5% 4,800 Coe¢ cient of variation 1.74
Mean 52,183 10% 6,056 Gini coe¢ cient 0.59
Standard deviation 90,661 25% 12,166 Theil index 0.68
Skewness 11 50% 26,142 Mean log deviation 0.66
Kurtosis 319 75% 57,000
Minimum 2 90% 116,130
Maximum 5,011,000 95% 183,000

Figure 1: Shapes of Asymmetric Kernels When b = 0:4

(a) x = 0.5

(c) x = 2.0

(b) x = 1.0

(d) x = 4.0
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Figure 2: Average Plots of Density Estimates for Selected Distributions (n = 100)

(a) Weibull [Distribution 2]:
<< near the origin >>

(b) Half­Normal [Distribution 3]:
<< near the origin >>

(c) Log­Normal [Distribution 5]:
<< near the origin >>

(d) Pareto [Distribution 6]:
<< near the origin >>

<< on right tail >>

<< on right tail >>

<< on right tail >>

<< on right tail >>
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Figure 3: U.S. Income Distribution

(a) Overall

(b) Near the Origin (c) On Right Tail

Figure 4: Brazilian Income Distribution

(a) Overall

(b) Near the Origin (c) On Right Tail
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