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Abstract: 

We show that misallocation of resource across firms is the key in explaining the slow Total 

Factor Productivity growth rate in Japan since the late 1990’s.  The degree of resource 

misallocation is summarized by the variation of Total Factor Revenue Productivity across 

firms.  Using the accounting data for Japanese manufacturing firms, we quantify the effect 

of allocation inefficiency in Japan and show that misallocation is highly cyclical and useful 

in explaining the fluctuation of aggregate Total Factor Productivity.  The resource 

misallocation in Japan is driven mainly by capital misallocation due to lagged response of 

firms’ investments to idiosyncratic unexpected productivity shock. 
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1 Introduction 

 

Lower Total Factor Productivity (TFP) growth is the leading cause of the sluggish 

GDP growth in Japan after the era of bubble economy.  Fukao, Miyagawa, Pyo and 

Rhee (2011) show that the TFP growth in Japan is lower by 1% after the late 1990’s 

compared with the preceding period.  There can be multiple causes for the lower TFP 

growth rate such as slower technological progress and rapidly aging population in 

Japan.  In this paper, we examine the impact of resource misallocation across firms as 

an alternative explanation for lower aggregate TFP growth rate in this period. 

We quantify the effect of allocation inefficiency on aggregate TFP using the model 

of monopolistic competition of Dixit and Stiglitz (1987) with allocation friction.  Each 

firm in an industry produces differentiated products.  Within an industry, the 

production function is identical except for the productivity parameter.  Each firm, 

however, faces different level of frictions which effectively raise the cost of inputs for the 

firm.  Given the productivity level and frictions, a firm sets its own price as a 

monopolist.  Without frictions, the profit maximization implies that the marginal 

revenue productivity of capital and labor should be equalized across firms in an industry.  

If firm-specific frictions exist, however, then the marginal revenue productivities can 

differ among firms.  The two measures of marginal revenue productivities can be 

summarized by the firm’s total factor revenue productivity (TFPR).  We show that the 

aggregate TFP is a function of the deviation of the firm’s individual TFPR from the 

industry average.   

The variation of firm-level TFPR is the useful summary of the allocation efficiency 

of the economy.  We use firm-level accounting data for manufacturing firms in Japan to 
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measure the variation of TFPR each year since 1989.  We find that the (cross-sectional) 

variation of TFPR is highly cyclical and quantitatively important in explaining the GDP 

growth rate in Japan since the late 1990’s.  Our findings show that the shock to 

average productivity is only a part of the TFP growth rate and the deviation of 

individual productivity from the average is a significant source of the aggregate 

fluctuation. 

 We then examine the source of the frictions which drive a wedge in TFPR 

across firms in an industry.  We find that an increase in uncertainty about 

idiosyncratic productivity shocks is the major source of the frictions in Japan.  As it 

takes time/resources to adjust the level of inputs, an unexpected idiosyncratic shock 

leads to variation of TFPR across firms.  If a firm is hit by a positive (physical) 

productivity shock, then it does not increase inputs immediately but rather with some 

time lags.  Due to sluggish adjustments of inputs, the variation of TFPR becomes 

larger as the magnitude of uncertainty (or the size of the shock) becomes larger.   

 We further investigate the alternative explanation for rising TFPR variation in 

Japan and find that the learning-by-doing hypothesis can also help explain the part of 

the variation in TFPR while other potential explanations are not consistent with the 

data. 

 Our research relates to the multiple strands of literature on productivity.  The 

preceding research closest to ours is Hsieh and Klenow (2009).  Hsieh and Klenow 

(2009) show that a significant difference in TFP between the U.S. and developing 

countries can be explained by the difference in allocation efficiency.  They conclude 

that government regulation and public ownership of the firms in China and India are 

the leading cause for the resource misallocation in these countries.  We also use firm’s 
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first order condition to identify frictions using the data on Japan manufacturing firms.  

Our conclusion, however, differs as we find that resource misallocation in Japan is 

cyclical and unlikely to be explained by government intervention.  Instead, we find 

that lending by policy finance institution in Japan actually helps reduce allocation 

inefficiency. 

 Hosono and Takizawa (2012) use plant-level data in Japan to examine to what 

extent the variation of TFPR is due to financial frictions.  To this end, they construct a 

structural model of a firm with a borrowing constraint.  Hosono and Takizawa (2012) 

fit the model to their data and find that the borrowing constraint can explain about a 

half of the capital distortion.   

Our paper differs from Hosono and Takizawa (2012) in three ways.  First, we 

focus on the time-series variation in allocation efficiency in Japan.  Given that the 

friction is measured as an error of the model, the level of the gain from efficient 

allocation is subject to model misspecification.  Comparing the US and Japan and 

computing the efficiency gain in the hypothetical case where Japan achieves the US 

efficiency is one way to avoid taking the model literally as truth.  We, on the other 

hand, focus on the time-series variation of resource misallocation.  Thus, unless one 

believes that model misspecification varies significantly over time, our evaluation of the 

change in efficiency gain over time is robust to potential model misspecifications. 

Second, we use firm-level data to measure productivity and frictions.  There 

are advantages and disadvantages in using firm level data as opposed to plant-level 

data such as Hosono and Takizawa (2012).  If the local licensing or regional-level 

regulation is the key source of the friction that a producer faces, then one should use 

plant-level data to measure such friction.  On the other hand, if firm-wide frictions 



5 

 

such as borrowing constraints or countrywide regulation which affect an entire firm as a 

legal entity as opposed to each plant, the use of firm-level data is preferred.  

Third, we differ from Hosono and Takizawa (2012) in that our approach is less 

structural than theirs.  We investigate the cause of the variation in revenue 

productivity not by fitting a structural model but by associating the productivity with 

other observables using the data.  In this sense, our work is complementary to Hosono 

and Takizawa (2012).   

 Our research also relates to Restuccia and Rogerson (2008) as they also suggest 

that resource misallocation can have an important effect on aggregate TFP.  Our 

measure of misallocation depends on TFPR, whose importance is highlighted by Foster, 

Haltiwanger and Syverson (2008).  

 The rest of the paper is organized as follows.  We present the model of 

monopolistic competition with firm heterogeneity in an industry in Section 2.  We show 

that the aggregate TFP depends on the deviation of firm TFPR from the industry 

average.  We then describe data in Section 3 and present the estimates of misallocation 

of resources across Japanese firms in Section 4.  The source of TFPR variation is 

analyzed in the following two sections and the role of the government is examined in 

Section 7.  Section 8 concludes.   

 

 

2 Model 

 

We model firms which operate within a framework of monopolistic competition of 

Dixit and Stiglitz (1977).  For the specific setup and the details about frictions, we 
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follow the model of Hsieh and Klenow (2009).  There are industries s = 1,… , S which 

produce industry-level aggregate output Ys.  Each industry is populated by Ms firms 

and each firm produces one type of output Ysi.  Each firm’s output is combined to 

produce Ys with the production function 

YS = (∑𝑌
𝑆𝑖

𝜎−1

𝜎

𝑀𝑆

𝑖=1

)

𝜎

𝜎−1

 

where σ denotes the elasticity of substitution among inputs.  Ys is in turn used to 

produce the economy-wide aggregate output Y. 

Given industry output, a cost minimization problem yields the demand function 

YSi = 𝑌𝑆 (
𝑃𝑆
𝑃𝑆𝑖

)
𝜎

 

with the price index 

PS = [∑𝑃𝑆𝑖
1−𝜎]

1

1−𝜎 

Given the demand function, each firm maximizes profits by choosing optimal 

level of labor and capital. Each firm has a production function: 

Ysi = 𝐴𝑠𝑖𝐾𝑠𝑖
𝛼𝑠𝐿𝑠𝑖

1−𝛼𝑠 

 A firm has its own level of productivity but the input share parameter αs is the 

same within the industry.  When choosing between labor and capital, we assume there 

is a firm-specific wedge 1 + τKsi
 which adds extra funding cost for firm i.  We also 

assume that there is friction in the output parameterized by τYsi which prevents a firm 

from producing at the optimal level possibly due to licensing and government 

regulation. 

Their profit maximization problem solves 

max(1 − 𝜏𝑌𝑠𝑖)𝑃𝑠𝑖𝑌𝑠𝑖 −𝑤𝐿𝑆𝑖 − (1 + 𝜏𝐾𝑆𝑖
)𝑅𝐾𝑆𝑖 

The first order conditions yield the restriction on the marginal revenue product 
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of labor and capital for the firm: 

𝑀𝑅𝑃𝐿𝑆𝑖 ≡
𝜎 − 1

𝜎
(1 − αs)

𝑃𝑆𝑖𝑌𝑆𝑖
𝐿𝑆𝑖

=
w

1 − τYSi
 (1)  

𝑀𝑅𝑃𝐾Si ≡
𝜎 − 1

𝜎
𝛼𝑆

𝑃𝑆𝑖𝑌𝑆𝑖
𝐾𝑆𝑖

= R
1 + 𝜏𝐾𝑆𝑖

1 − 𝜏𝑌𝑆𝑖
 (2)  

Equations (1) and (2) show that MRPLsi should be equalized across firms if 

there is no friction τYsi.  Similarly, MRPKsi should be equalized across firms if the 

frictions τYsi and τKsi
 are both zero.   

The profit maximization for the monopolistic firm yields the usual price 

mark-up rule of 

PSi =
𝜎

𝜎 − 1
[

𝑤

1 − 𝛼𝑆
]
1−𝛼𝑆

[
𝑅

𝛼𝑆
]
𝛼𝑆 (1 + 𝜏𝐾𝑆𝑖

)
𝛼𝑆

(1 − 𝜏𝑌𝑆𝑖)𝐴𝑆𝑖

 

The optimal output is 

YSi = 𝑌𝑆𝑃𝑆
𝜎𝑃𝑆𝑖

−𝜎

= 𝑌𝑆𝑃𝑆
𝜎 (

𝜎 − 1

𝜎
)
𝜎

[
1 − 𝛼𝑆
𝑤

]
𝜎(1−𝛼𝑆)

[
𝛼𝑆
𝑅
]
𝜎𝛼𝑆

(
(1 − 𝜏𝑌𝑆𝑖)𝐴𝑆𝑖

(1 + 𝜏𝐾𝑆𝑖
)
𝛼𝑆

)

𝜎

 

The final output is produced using the production function 

Y = ∏𝑌𝑆
𝜃𝑆 

The cost minimization yields 

PS =
𝜃𝑆𝑌

𝑌𝑆
 

Again, the labor demand for firm i is 

LSi =
1 − 𝛼𝑆
𝑤

𝑌𝑆𝑖𝜆𝑆𝑖 =
1 − αS
𝑤

(𝜎 − 1)

𝜎
(1 − 𝜏𝑌𝑆𝑖)𝑌𝑆𝑖PSi 

We assume that the aggregate supply of capital and labor is fixed at K  and L .  

Equating the aggregate supply and demand of labor, the sector labor demand can be 

written as 
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LS = 𝐿
(1 − 𝛼𝑆)𝜃𝑆/𝑀𝑅𝑃𝐿𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅

∑(1 − 𝛼𝑆′)𝜃𝑆′/𝑀𝑅𝑃𝐿𝑆′̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

where the average MRPL is 

MRPLS̅̅ ̅̅ ̅̅ ̅̅ ̅ =
w

∑(1 − 𝜏𝑌𝑠𝑖)
𝑃𝑆𝑖𝑌𝑆𝑖

𝑃𝑆𝑌𝑆

 

Similarly, by aggregating capital demand and equating it to the aggregate supply of 

capital K, we have 

KS = 𝐾
𝛼𝑆𝜃𝑆/𝑀𝑅𝑃𝐾𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅

∑𝛼𝑆′𝜃𝑆′/𝑀𝑅𝑃𝐾𝑆′
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

where 

MRPKS
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

𝑅

∑
1−𝜏𝑌𝑆𝑖
1+𝜏𝐾𝑆𝑖

PSi𝑌𝑆𝑖

𝑃𝑆𝑌𝑆

 

We can then express the aggregate output Y as a function of Ks, 𝐿𝑠 and industry TFP: 

Ys = 𝑇𝐹𝑃𝑠 ⋅ 𝐾𝑠
𝛼𝑠𝐿𝑠

1−𝛼𝑠 

Y = ∏(𝑇𝐹𝑃𝑠 ⋅ 𝐾𝑠
𝛼𝑠𝐿𝑠

1−𝛼𝑠)
θs

S

s=1

 

 Next, we show that industry TFPs can be expressed as a function of the total 

factor revenue productivity (TFPR) variation of each firm within industry.  The 

revenue productivity for the individual firm at the optimum is 

TFPRSi ≡
𝑃𝑆𝑖𝑌𝑆𝑖

𝐾𝑆𝐼
𝛼𝑆𝐿𝑆𝑖

1−𝛼𝑆
=

𝜎

𝜎 − 1
(
𝑅

𝛼𝑆
)
𝛼𝑆

(
𝑤

1 − 𝛼𝑆
)
1−𝛼𝑆 (1 + 𝜏𝐾𝑆𝑖

)
𝛼𝑆

1 − 𝜏𝑌𝑆𝑖
 

The point of the equation is to show that the revenue productivity can vary 

across firms in an industry only due to τYsi and τKsi
, not due to physical productivity 

Asi .  Regardless of the physical productivity, the revenue productivity should be 

equalized across firms in our setup of monopolistic competition.  If a firm has higher 

physical productivity, it should expand the output such that its revenue productivity 

falls until it is equal to the revenue productivity of other firms in the same industry.   
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Also, we can rewrite the definition of TFPRsi as 

 

TFPRsi =
𝑃𝑆𝑖𝑌𝑆𝑖

(
𝜎−1

𝜎
𝛼𝑆

𝑃𝑆𝑖𝑌𝑆𝑖

𝑀𝑅𝑃𝐾𝑆𝑖
)
𝛼𝑆

(
𝜎−1

𝜎
(1 − αs)

𝑃𝑆𝑖𝑌𝑆𝑖

𝑀𝑅𝑃𝐿𝑆𝑖
)
1−𝛼𝑆

=
σ

σ − 1
(
𝑀𝑅𝑃𝐾𝑆𝑖

𝛼𝑆
)
𝛼𝑆

(
𝑀𝑅𝑃𝐿𝑆𝑖
1 − 𝛼𝑆

)
1−𝛼𝑆

 

(3)  

 

As TFPRsi is a function of MRPKsi and MRPLsi, TFPRsi should be equalized 

across firms in an industry if a firm can freely adjust the level of both labor and capital.  

In other words, the variation of TFPRsi is the indicator for frictions which prevent firms 

from achieving their optimal use of either labor or capital. 

We also define the industry average total factor revenue productivity as 

 

TFPRS
̅̅ ̅̅ ̅̅ ̅̅ ̅ =

σ

σ − 1
(
𝑀𝑅𝑃𝐾𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝛼𝑆
)

𝛼𝑆

(
𝑀𝑅𝑃𝐿𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅

1 − 𝛼𝑆
)

1−𝛼𝑆

 (4)  

 

Then, the industry TFP can be written as 

TFPs = (∑{𝐴𝑠𝑖

𝑇𝐹𝑃𝑅𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑇𝐹𝑃𝑅𝑠𝑖
}

𝜎−1𝑀𝑠

𝑖=1

)

1

𝜎−1

 

If there are no frictions, then the total revenue productivity must be equalized 

within industry such that TFPRsi = 𝑇𝐹𝑃𝑅𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅ for all 𝑖 in Ms. Thus, industry TFP with 

efficient allocation can be written as As
̅̅ ̅ = (∑ 𝐴𝑠𝑖

𝜎−1𝑀𝑠
𝑖=1 )

1

𝜎−1.  The efficiency gain is defined 

as the ratio between actual output and the output with efficient allocation. 

Y

Yefficient
= ∏[∑{

𝐴𝑠𝑖

𝐴𝑠
̅̅ ̅

𝑇𝐹𝑃𝑅̅̅ ̅̅ ̅̅ ̅̅
𝑠

𝑇𝐹𝑃𝑅𝑠𝑖
}

𝜎−1𝑀𝑠

𝑖=1

]

𝜃𝑠
𝜎−1𝑆

𝑠=1

 (5)  

The equation shows that to detect the allocation inefficiency, the key indicator is 
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the variation of TFPR from the industry average, not the level of TFPR.  Suppose that 

τYsi = 𝜏𝑌𝑠 ≠ 0  and τKsi
= τKs

≠ 0  hold for all 𝑖 .  That is, there is a constant but 

non-zero friction in industry s.  Then TFPR̅̅ ̅̅ ̅̅ ̅
s = TFPRsi still holds for all 𝑖 and TFPs is 

at its ‘efficient’ level.  If an industry has high level of τYs on average but they do not 

vary across firms, then industry level labor Ls and capital Ks are low while TFPs is 

unaffected.  Due to fixed supply of labor and capital, the labor and capital market 

clearance guarantee that average inefficiency does not affect outputs in this framework. 

The efficiency gain Y/Yefficient is less than one if the firm with higher physical 

productivity tends to have higher revenue productivity.  That is, if a firm which should 

expand their output (high Asi) does not do so in reality due to some frictions (high 

TFPRsi), then the economy-wide output is less than the efficient level of output, leading 

to the efficiency gain. 

    To gain more insights, we rewrite equation (5) assuming that logAsi ≡ asi , 

log 1 − τYsi ≡ 𝑥𝑠𝑖 and log(1 − τYsi)/(1 + 𝜏𝐾𝑠𝑖
) ≡ zsi are jointly normally distributed.  In 

this case, logTFPRsi ≡ tsi are also jointly normally distributed.  Then, 

log𝑌 − log𝑌𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

= −
1

2
∑θs{(σ − 1)Vars[tsi] + αsVars[zsi] + (1 − αs)Vars[xsi]}

S

s=1

− 2(σ − 1)∑θsCovs(𝑎si, tsi)

S

s=1

 

holds.  Appendix 1 shows the derivation of the decomposition of efficiency gain under 

log-normality assumption.   

The loss in productivity from the inefficient allocation comes from two sources:  

The first term is the variance of TFPR which is always negative.  The second term is 

the covariance between physical and revenue productivity.  To the extent that two 

measures of productivities are positively correlated, the covariance term lowers the 
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industry-level TFP. 

 

 

3 Data 

The data we use is the DBJ Financial Database of Listed Firms provided by 

Development Bank of Japan.  The database covers all firms listed in Tokyo and 

other regional stock exchanges in Japan from 1960 to present.  The data provides 

the financial statements and supplements at annual frequency.  The database 

includes delisted firms; therefore there is no survivorship bias. 

As our data is limited to listed firms, we are focusing on the sample with 

relatively smaller frictions.  Listed firms typically have better access to the capital 

market due to better disclosure and smaller information asymmetry.  Thus, firms 

in our sample should find it relatively easier to adjust their capital level when hit 

by productivity shocks.  Therefore, our estimates of TFPR variation can be 

considered as a lower bound of the true allocation inefficiency in Japan.   

 We use non-consolidated financial statements for our analysis.  Since we need 

to classify each manufacturing firm into industries, it is better to use 

non-consolidated data to narrow the scope of the business of the firm.  Also, more 

data items are available for non-consolidated financial statements than 

consolidated ones.  For example, the detailed breakdown of Cost of Goods Sold is 

available only for non-consolidated statements. 

Value added is computed by the following formula: 

 

Value added = Ordinary Profit + Wage – Interests and Dividends Paid + 
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Interests and Dividends Received + Tax Paid + Depreciation 

 

where ordinary profit is operating profit plus net interest received. 

 Wage is computed by adding Labor Cost in the Cost of Goods Sold to Wage in 

Selling, and General and Administration Expenses.  This measure of labor cost 

may miss the cost of pensions and other employment benefits.  To examine the 

severity of the problem, we compute the labor share for all firms each year and 

compare the average to the labor share in GDP.  We find that they are roughly the 

same (around 70% in the latter half of the sample) and therefore decide to use Wage 

as a measure of labor cost. 

 We remove holding companies from the analysis, as their value-added is not 

comparable to the firms that run business operation.  Specifically, a holding firm 

records their interests and dividends received as Sales instead of Interest Received.  

Thus, the interests and dividends received by a holding firm will be included in 

value added.  As holding firms typically have no or very little fixed capital and few 

employees, their productivity measure tends to be extremely high.  The difference 

in accounting makes it hard to compare holding companies to other operating 

companies. 

To identify holding companies, we set the threshold on the ratio of financial 

investments to total assets.  If the ratio exceeds 95%, we judge that the firm is a 

holding firm and should be removed from the sample.  We also test by removing 

firms whose name includes ‘Holdings’.  The two methodology yields essentially the 

same result and thus we report the result based on the 95% threshold. 

 To classify manufacturing firms into industries, we use the DBJ industry code 
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which mostly corresponds to the four digit SIC code in the US.  To maintain the 

number of firms in each industry large enough for the analysis, we use the median 

category of DBJ industry code.  The median category classifies the manufacturing 

firms into 17 sectors.  Each median category mostly corresponds to the first 2 

digits of the SIC codes.  For example, the first sector (Food) corresponds to the US 

SIC codes between 2000 and 2100 and the second sector (Textile) corresponds to the 

SIC codes between 2200 and 2400 and so on.  

 Many Japanese firms have their fiscal year ending in March rather than 

December.  When I calculate the productivity using the data as of (or before) 

March in year t+1, then I treat it as year t observation.   

To estimate industry capital share parameter αs, we use the capital share of 

the US manufacturing plants obtained from NBER-CES Manufacturing Industry 

Database.  The database contains all manufacturing industries from 1958 to 2005 

at4-digit SIC code level and provides the labor compensation and value added for 

each industry.   

 

4 Allocation Efficiency in Japan from 1989 to 2009 

In this section, we show the estimates of the change in allocation efficiency over the 

period between 1989 and 2009.  We focus on this period since 1989 is the peak of the 

bubble economy in Japan and the beginning of the Japan’s lost two decades.   

In order to estimate the efficiency gain Y/Yefficient from the data, we need to set 

parameters to back out frictions. 

Following Hsieh and Klenow (2009), we set the rental rate of capital to R = 0.1.  

As we focus on the variation of the productivity of capital from the industry average, 
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changing R does not change the estimated efficiency gain.   

We set the elasticity of substitution between firms’ output to σ = 3.  In general, 

the efficiency gain is increasing in σ.  Although we focus on the change in efficiency 

gain between 1989 and 2009, the change can be exaggerated if the level of inefficiency is 

overestimated.  Empirically, estimates of the elasticity of substitution range from 3 to 

10 (Broda and Weinstein (2006) and Hendel and Nevo (2006)), thus we make a 

conservative choice to avoid overestimating the efficiency gain. 

We set the capital share for each industry αs to the level of capital share of the 

corresponding industry in the U.S.  With the most developed financial market and 

relatively few government regulations, the resource allocation in the U.S. market is 

considered to be relatively undistorted.  Thus, we use the capital share in the U.S. as 

our benchmark to measure resource misallocation in Japan.  

The use of the U.S. capital share is necessary to identify the friction in the data.  

At the optimum, the capital/labor ratio for each firm depends both on the friction and on 

the capital share parameter αs.  Thus, we cannot separately identify industry average 

friction and the capital share without exogenously determine either one of the two.   

Following Hsieh and Klenow (2009), we estimate the capital share parameter in the 

U.S. each year by 

αs,t = 1 −
3

2

𝑊𝑎𝑔𝑒𝑠,𝑡
𝑉𝑎𝑙𝑢𝑒 𝐴𝑑𝑑𝑒𝑑𝑠,𝑡

 

We multiply the labor share by 3/2 in order to adjust for the non-wage benefits.  This 

way, the average labor share from the NBER-CES database approximately matches the 

labor share in National Income and Product Accounts.   

 The estimated αs,t is highly stable over time in our sample period.  Thus, we 

assume that the capital share after 2006 is the same as that of 2005.  As a robustness 
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check, we also compared the difference in the TFPR distribution between 1989 and 2005 

(instead of 2009) but the results are qualitatively the same as the case of 2009.   

Figure 1 plots the cross-sectional distribution of Total Factor Physical Productivity 

(TFPQ) log𝐴𝑠𝑖𝑀𝑠

1

𝜎−1/𝐴𝑠
̅̅ ̅ in 1989 and 2009.  It is evident that the distribution in 2009 

has longer left tail, suggesting that the variation in TFPQ becomes larger in 2009. 

 

Figure 1: Distribution of Total Physical Productivity 

The figure plots the cross-sectional distribution of the deviation of firms’ physical productivity from the 

industry average log 𝐴𝑠𝑖𝑀𝑠

1

𝜎−1/𝐴𝑠
̅̅ ̅ in 1989 and 2009. 

 

The variation of the TFPQ itself does not imply inefficiency.  In our model, it is TFPR 

which should be equalized across firms.  Figure 2 plots the distribution of the log TFPR 

(relative to the industry average) in 1989 and 2009.   

 In Figure 2, the TFPR clearly varies more in 2009 than in 1989.  Both tails 
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become fatter in 2009.  This implies that the allocation efficiency in Japanese 

manufacturing sector deteriorated during this period. 

 

Figure 2: Distribution of Total Revenue Productivity 

The figure plots the cross-sectional distribution of the deviation of firms’ revenue productivity from the 

industry average log 𝑇𝐹𝑃𝑅𝑠𝑖/𝑇𝐹𝑃𝑅𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅ in 1989 and 2009. 

 

Figure 3 shows the estimated TFP gains from efficient allocation in (5) estimated 

for each year from 1958 to 2011.  As we can see, there is a sharp rise in allocation 

inefficiency in Japan since the late 1990’s.  The misallocation of resource peaked in 

2008, when the Great Recession began in the U.S.   
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Figure 3: Efficiency Gains in Outputs 

Figure plots 
Yefficient

Y
− 1, where Yefficient is estimated by equalizing TFPRsi at industry average each 

year.  The higher value of the TFP gain indicates there is more inefficiency in resource allocation. 

 

 To measure the economic magnitude of the change in allocation inefficiency, we 

compute the contribution of the change in inefficiency to the GDP growth rate.  We do 

so by multiplying the GDP share of manufacturing industry in Japan to the (negative) 

log change in the efficiency gain.  (Since a rise in efficiency gain means a fall in the 

observed GDP relative to the efficient level, we use the negative of the change in the 

efficiency gain.)  Figure 4 compares the historical real GDP growth rate in Japan and 

log change in efficiency gain. 
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Figure 4: Log Change in Efficiency Gain and Real GDP Growth Rate 

Figure plots real GDP growth rate in Japan since 1995 (based on fiscal year ending in March). Change 

in allocation efficiency is log 𝐺𝑎𝑖𝑛𝑡/𝐺𝑎𝑖𝑛𝑡+1, where 𝐺𝑎𝑖𝑛t ≡ 𝑌𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,𝑡/𝑌𝑡  The higher value of the TFP 

gain indicates there is more inefficiency in resource allocation. 

 

As we can see, the change in the efficiency gain is highly correlated with the 

real GDP growth in the data.  This looks surprising at the first glance since the 

efficiency gain is computed based on the deviation from the industry average TFPR, not 

the level of TFPR.  If the productivity of all firms falls but the deviation from the 

average does not change, we should see a fall in real GDP growth rate but not in the 

efficiency gain.   

 Figure 4 shows that the shock to the efficiency gain is economically significant, 

when compared with the actual GDP growth rate.  In 1998, the real GDP fell by -0.65% 

per year while the efficiency gain increased by 0.62%.  So nearly all of the fall of the 

GDP in 1998 can be attributed to the rise in allocation inefficiency.  Also in 2008, the 

real GDP fell by 1.66% in a wake of the financial crisis in the US while the efficiency 

gain rose by 0.87%, explaining more than half of the decrease in the GDP.  These 
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figures show that the change in allocation efficiency is an economically significant 

driver for the value-added in Japan after the 1990s. 

 Table 1 shows the cross-sectional distribution of the ratio of the TFPR to its 

industry average as well as the efficiency gain from 1958 to 2011.  As we can see, the 

standard deviation of the TFPR ratio rises from 0.33 in 1989 to 0.61 in 2009.  The rise 

in the standard deivation roughly lines up with the rise in efficiency gain, which 

increases from 0.15 in 1989 to 0.48 in 2009.  If the allocation inefficiency had been 

constant since 1989 until 2009, the GDP would have been higher by 2.74% in 2009, or 

0.27% in terms of annual growth rate.  Given the average real GDP growth rate in 

Japan since 1994 is 0.35%, the magnitude of the loss from the increasing allocation 

inefficiency in manufacturing sector is considerable. 

 

Table 1: Distribution of TFPR from 1989 to 2009 

The table tabulates the summary statistics of the distribution of log 𝑇𝐹𝑃𝑅𝑠𝑖 /𝑇𝐹𝑃𝑅𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅ each year.  The 

efficiency gain is computed by 
Yefficient

Y
− 1 , where Yefficient  is estimated by equalizing TFPRsi  at 

industry average each year. 

# of Distribution of TFPR Percentiles Efficiency
Obs. Mean Std Skew Kurt 1% 25% 50% 75% 99% Gain

1989 1267 0.09 0.33 0.20 6.13 -0.67 -0.12 0.07 0.28 0.98 0.15
1990 1298 0.08 0.37 -0.41 9.95 -0.90 -0.12 0.07 0.29 1.00 0.18
1991 1302 0.09 0.35 -0.02 7.63 -0.75 -0.11 0.08 0.28 1.01 0.16
1992 1318 0.07 0.40 -0.65 7.58 -1.04 -0.15 0.08 0.30 0.98 0.18
1993 1338 0.06 0.45 -1.74 18.23 -1.20 -0.15 0.08 0.30 0.98 0.18
1994 1379 0.05 0.44 -2.01 17.58 -1.36 -0.15 0.09 0.30 0.90 0.17
1995 1404 0.04 0.41 -1.39 13.24 -1.09 -0.16 0.06 0.28 0.96 0.17
1996 1420 0.04 0.35 -0.30 3.99 -0.90 -0.17 0.06 0.27 0.85 0.17
1997 1431 0.04 0.41 -1.03 10.74 -1.10 -0.17 0.06 0.28 0.92 0.20
1998 1441 0.03 0.46 -0.83 11.15 -1.38 -0.18 0.05 0.29 1.03 0.27
1999 1441 0.05 0.45 -0.18 7.67 -1.20 -0.19 0.07 0.31 1.08 0.33
2000 1424 0.02 0.45 -0.25 5.91 -1.22 -0.20 0.04 0.28 1.12 0.30
2001 1399 0.01 0.49 -0.17 7.30 -1.42 -0.23 0.04 0.29 1.21 0.36
2002 1364 -0.01 0.51 -1.24 20.37 -1.29 -0.24 0.01 0.26 1.24 0.34
2003 1334 0.01 0.47 0.37 7.18 -1.24 -0.23 0.02 0.26 1.29 0.39
2004 1310 0.02 0.47 0.26 7.71 -1.18 -0.23 0.02 0.26 1.41 0.48
2005 1298 0.00 0.48 0.18 8.17 -1.31 -0.25 0.01 0.25 1.43 0.49
2006 1278 -0.01 0.51 -0.31 9.88 -1.40 -0.26 -0.01 0.26 1.49 0.45
2007 1249 -0.02 0.50 -0.03 9.25 -1.34 -0.28 -0.02 0.25 1.43 0.44
2008 1218 0.03 0.63 -3.03 45.75 -1.77 -0.26 0.06 0.36 1.43 0.56
2009 1193 0.01 0.61 -1.39 11.24 -1.78 -0.27 0.05 0.35 1.31 0.48
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Next, we examine if the allocation inefficiency captured by the variation of the 

TFPR from the industry average comes from the misallocation of capital or labor.  

From equations (3) and (4), we obtain 

TFPRsi

TFPRS
̅̅ ̅̅ ̅̅ ̅̅ ̅ = (

𝑀𝑅𝑃𝐾𝑠𝑖

𝑀𝑅𝑃𝐾𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝛼𝑆

(
𝑀𝑅𝑃𝐿𝑠𝑖

𝑀𝑅𝑃𝐿𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅)

1−𝛼𝑆

 

Taking log and variance of the both sides yield 

Var [log(
TFPRsi

TFPRS
̅̅ ̅̅ ̅̅ ̅̅ ̅)]

= Var [𝛼𝑠 log
𝑀𝑅𝑃𝐾𝑠𝑖

𝑀𝑅𝑃𝐾𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] + Var [(1 − αs) log
𝑀𝑅𝑃𝐿𝑠𝑖

𝑀𝑅𝑃𝐿𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅ ]

+ 2Cov(𝛼𝑠 log
𝑀𝑅𝑃𝐾𝑠𝑖

𝑀𝑅𝑃𝐾𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (1 − αs) log
𝑀𝑅𝑃𝐿𝑠𝑖

𝑀𝑅𝑃𝐿𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅) 

This equation shows that we can decompose the variance of the TFPR into the variance 

of MRPK and the variance of MRPL and their covariance.   

 Table 2 shows the result of the variance decomposition computed for 1989 and 

2009.  As we can see, most of the variation of the TFPR comes from the variation in 

MRPK.  Throughout the period from 1958 to 2011, about 70% to 100% of the variance 

of the TFPR is due to the variance of the MRPK and the small fraction of the variation 

is accounted for by the variance of MRPL and the covariance between MRPK and 

MRPL. 

 

Table 2: Variance Decomposition of TFPR 

Year σ (𝑇𝐹𝑃𝑅) σ (𝑀𝑅𝑃𝐾) σ (𝑀𝑅𝑃𝐿) Cov(𝑀𝑅𝑃𝐾,𝑀𝑅𝑃𝐿) 

1989 0.11 0.11  (99.0%) 0.01  (9.0%) -0.01  (-8.0%) 

2009 0.37 0.30  (80.0%) 0.02  (6.0%) 0.05  (13.0%) 

The table shows the variance decomposition of TFPR each year.  The figures in parenthesis are 

percentage of variance relative to the variance of TFPR.   
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Thus, the major source of the allocation inefficiency in Japan between 1989 and 

2009 is the misallocation of capital rather than labor.   

 

5 Idiosyncratic Physical Productivity Shocks 

The fact that allocative efficiency is highly cyclical in Japan implies that 

government policy and change in regulations may not be the main driver for the 

misallocation in Japan.  This observation contrasts the conclusion of Hsieh and 

Klenow (2009) who find that the regulation of the government is the key in explaining 

the difference in allocation efficiency between the US and developing countries (such as 

China and India). 

In this section, we examine if the variation of TFPR is driven by idiosyncratic 

physical productivity shocks.  If physical productivity Asi  is stochastic and a firm 

cannot adjust its input level immediately, then TFPR can vary across firms.  If a 

physical productivity shock is systematic, then the firm should be able to trade state 

contingent claim so that its input revenue productivity is equalized with other firms 

state-by-state.  On the other hand, if the shock is idiosyncratic, then it cannot be 

shared by other market participants, leading to deviation of TFPR from the industry 

average.  As we focus on the difference in variation of TFPR between 1989 and 2009, 

the question is whether there is a rise in uncertainty in an idiosyncratic physical 

productivity shock.   

To measure the magnitude of uncertainty, we first extract idiosyncratic component 

of physical productivity by supposing 𝑎sit ≡ logAsit has the following structure 

𝑎sit = 𝑎̃t + ϵsit 
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where 𝑎̃t is a common shock and ϵsit is a firm-specific shock.  We also assume that a 

firm-specific shock follows AR(1) process 

ϵsit = ρϵϵsit−1 + ηsit 

 Using the estimates of Asi  for each year, we fit the model by assuming 

𝑎̃t =
1

S

1

Ms
∑ ∑ 𝑎𝑠𝑖𝑡𝑠𝑖𝑠 .  We run a panel regression of idiosyncratic productivity ϵsit on its 

lagged value to extract the residual η̂sit with time fixed effects.  The residual η̂sit is 

the estimate of the idiosyncratic physical productivity shock and we compute the 

standard deviation of η̂sit each year.   

 

Table 3: Idiosyncratic Productivity and AR(1) Estimates of Shocks 

Model Estimates: 
   

  ρϵ   σ(η̂sit)   

 
0.90 

 
1989 0.23 

  (0.014)   2009 0.71 

The table shows the a panel estimate of ϵsit = ρϵϵsit−1 + ηsit with time fixed effects.  The figure in 

parenthesis is a standard error clustered by time and σ(η̂sit) is the standard deviation of residual 

computed using the sample in a particular year. 

 

    As we can see in Table 3, the uncertainty of idiosyncratic productivity shocks rises 

significantly from 1989 and 2009.  The correlation (over time) between the standard 

deviation of TFPR and the standard deviation of idiosyncratic physical productivity 

shock is as high as 0.78.  Thus, an unexpected shock to productivity is an important 

source of the deviation of TFPR.  Explaining the variation of TFPR with shocks to 

physical productivity is not a tautology.  We find that uncertainty, rather than a trend, 

in physical productivity is the main driver of the resource misallocation.  Estimating 

the idiosyncratic shock as a deviation from the industry-specific average rather than 
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overall average produces a very similar result. 

    One might be concerned about the fact that we use the estimated productivity Asi 

using the same model as we use to extract TFPRsi.  If our assumption about the capital 

share parameter αs is wrong then the model specification error might drive both Asi 

and TFPRsi in the same direction.  To mitigate this concern, we estimate a productivity 

shock based on the method of Cooper and Haltiwanger (2006).  In Cooper and 

Haltiwanger (2006), the capital share parameter is estimated using instruments such 

as lagged capital and sales.  The detail of the estimation process is in Appendix 2.  We 

find that the uncertainty rises from 1989 and 2009 and that our result is robust to the 

different way of estimating a physical productivity shock. 

The correlation between uncertainty and the variation of TFPR is consistent with 

two potential explanations.  The first explanation is lagged response of firms to 

unexpected productivity shocks.  Since a firm can adjust capital only with some time 

lags as it takes time to install/discard capital.  Thus, when hit by an idiosyncratic 

productivity shock, a firm responds with lags and adjusts the input level sluggishly, 

which leads to temporal variation of TFPR.  With this lagged response, greater size of 

an idiosyncratic shock leads to greater variation of TFPR.   

The other explanation is hysteresis in firm’s investment as in Dixit (1989).  

Making investment is the same as exercising an option to enter the market.  Thus, 

greater uncertainty increases the value of waiting.  If more firms are in an inaction 

region in 2009 than in 1989 due to rising uncertainty, the variation of TFPR becomes 

greater in 2009.  Unlike the first explanation, Dixit (1989)’s model does not forecast 

that a firm will respond with lags.  If a firm is in an inaction region today and nothing 

happens next period, then the firm is still unlikely to make any adjustments.  Though 
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both sluggish adjustments and real option theory implies the variation of TFPR due to 

uncertainty, they differ in forecasting firms’ future behavior. 

To see which of the two explanations better capture the reality, we examine the 

relationship between TFPR and a firm’s future adjustment behavior.  If the lagged 

response of a firm is the driver of the variation of TFPR, then high TFPR should 

forecast an increase in investment.  The typical convex cost function of investment 

depends not on investment but on its ratio to the capital.  Thus, we check if there is 

any positive relationship between TFPR and future investment/capital ratio. 

 

Table 4: Investment-Capital Ratio and TFPR 

k -3 -2 -1 0 1 2 3 

b1 0.05 0.05 0.08** 0.15*** 0.45*** 0.41*** 0.36*** 

b1(𝑌𝑒𝑎𝑟) 0.03 0.03 0.06* 0.13*** 0.47*** 0.43*** 0.37*** 

b1(𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦) 0.06 0.05 0.09* 0.15*** 0.46*** 0.43*** 0.37*** 

The table shows the estimated slope coefficient of the regression TFPRit = 𝑏0 + 𝑏1(𝐼/𝐾𝑖𝑡+𝑘) +

𝜖𝑖𝑡, where k = −3,−2,−1,0,1,2,3.  The first row shows the panel regression result with no 

dummy variables.  The second row shows the regression with year dummies while the third 

row shows the regression with industry dummies.  IKit is winsorized at 1 percentile and 99 

percentile to remove outliers.  The standard errors are clustered by time first and added 5 

lags in time with Newey-West weighting.   

 

 Table 4 shows the result of the regression of TFPR at time t onto 

investment-capital ratio at t+k.  We run a panel regression using all the data, with or 

without year and industry dummies.  Regardless of the regression specification, the 

current deviation of TFPR is highly related to future investment-capital ratio.  As 

capital does not vary too much over time, the variation is driven mainly by investments.  

Thus, the data is consistent with the interpretation that a firm faces cost of investment 
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and start investing with lags.  This sluggish adjustment leads to the variation of 

marginal revenue product of capital, which explains most of the variation of TFPR.   

 To summarize our findings thus far, the misallocation of resource in Japanese 

manufacturing sector increases significantly since 1989.  The rising allocation 

inefficiency of capital explains a sizable portion of Japan’s sluggish TFP growth rate 

after the bubble period.  The increase in resource misallocation is driven by rising 

uncertainty in firm-level physical productivity shock.  As the firm responds to a shock 

with lags, a larger shock leads to greater misallocation of capital.  These idiosyncratic 

physical productivity shocks can be firm-specific technology shocks or shocks to 

consumers’  preference.   

 

6 Other Explanation of the Variation of TFPR 

 In this section we explore several alternative (but not mutually exclusive) 

theories other than rising uncertainty that may explain the increased variation in 

TFPR in Japan over the last two decades.  Overall, we do not find convincing 

alternatives to rising uncertainty in explaining the greater variation of TFPR over time 

in Japan. 

6.1 Increasing Model Error and IPO/delisting probability 

The first obvious interpretation of our finding is that the fit of the model 

becomes worse from 1989 to 2009.  The increase in model specification error 

can cause the variation of the TFPR to grow over time, which may drive our 

result.  If that is the case, what we see in the data may have nothing to do 

with the increasing allocation inefficiency but the model errors.   

    Though we cannot completely deny the possibility of model 
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misspecification, we can check the reliability of the estimated TFPR variation 

by relating it to something which we can observe and interpret. 

 One test we conduct here is whether there is any relationship between 

the deviation of TFPR and IPO/delisting probability.  If we see higher 

probability of IPO/delisting conditional on high/low deviation of TFPR, then 

such deviation of TFPR is less likely an artifact of model misspecification.  

Also, finding the determinant of IPO/delisting is interesting on its own.  For 

example, finding a factor that is associated with a higher probability of IPO is 

useful in studying the role of venture capital (e.g. Miyakawa and Takizawa 

(2012)).   

 To test the hypothesis whether high/low TFPR is associated with the 

probability of IPO/delisting, we estimate the following logit model via 

Maximum Likelihood. 

Prob(DIPOit = 1) =
𝑒𝑏0+𝑏1𝑇𝐹𝑃𝑅𝑖𝑡

1 + 𝑒𝑏0+𝑏1𝑇𝐹𝑃𝑅𝑖𝑡
 

Prob(DDelistit = 1) =
𝑒𝑐0+𝑐1𝑇𝐹𝑃𝑅𝑖𝑡

1 + 𝑒𝑐0+𝑐1𝑇𝐹𝑃𝑅𝑖𝑡
 

 

  Table 5: Logit Model Based On TFPR Deviation 

D b1,  1 t(b1), t( 1)  Prob(D = 1) 

Delist -0.84 -4.22 -0.16 

Listed 0.93 9.68 2.18 

The table shows the Maximum Likelihood estimates of logit model using the entire panel data.  

The left-hand variable is dummy variables which take value of one for delisting (or IPO) and zero 

otherwise.  The right hand side variable is the deviation of TFPR from the industry average.  

The standard errors are clustered by time and t-statistics are computed without assuming the 

Information Matrix Equality for robustness.   Prob(D = 1)  is the change in probability of 

delisting (or IPO) when TFPR changes from the 5 percentile to 95 percentile value.   
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  Table 5 shows the result of the estimated coefficient on TFPR 

deviation.  Higher TFPR is associated with higher probability of IPO and lower 

probability of delisting.  The coefficients are statistically significant at the 

traditional 5% cutoff level.  When we compare the probability of delisting and IPO 

between a firm with the 95 percentile of TFPR and a firm with the 5 percentile of 

TFPR, the difference in probability of delisting is -0.16% while the difference in 

probability of IPO is 2.18%.   

 Peters (2011) examines how TFPR is associated with firms’ entry using firm 

level data in Indonesia.  He runs regression of TFPR on an entry dummy and finds 

that new entrants have low TFPR rather than high TFPR.  Based on this 

observation, Peters (2011) concludes that credit market frictions are not likely to be 

the cause of TFPR variation.  Our result based on Japanese data shows the 

contrary:  Newly-listed firms are likely to be more financially constrained than 

already listed firms.  Our findings that newly listed firms tend to have high TFPR 

is consistent with the hypothesis that financial market friction makes it hard for a 

firm to increase its capital level fast enough.   

 The fact that the deviation of TFPR is highly associated with IPO and delisting 

probabilities alleviates the concern that the estimated TFPR deviation is due to 

increasing model misspecification over time.  In the next subsections, we associate 

the deviation of TFPR to observables to see if we can attribute the friction to other 

observables in the economy. 

 

6.2 Varying markups with plant size 
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Our model with the CES aggregation implies that the markup over the 

marginal cost is the same across all firms.  On the other hand, larger firms may 

have greater power to control the market and to achieve the higher markups.  If 

the variation in firm size becomes greater in 2009 than in 1989, the model 

misspecification with growing variation in size may be the key driver for our result. 

 To attribute the TFPR variation to size, we run non-parametric kernel 

regression of TFPR on log size.  We use the Gaussian kernel and the bandwidth is 

chosen to minimize generalized cross-validation.  Appendix 3 shows the details of 

the kernel regression.   

Figure 5 shows that there is no clear relationship between log size (measured 

by value-added) and TFPR in 1989.  On the other hand, TFPR seems to be 

increasing in log size in 2009.  A theory (e.g. Melitz and Ottaviano (2008)) states 

that there is a stable negative relationship between size and elasticity of demand, 

but the prediction is not supported by the data in Japan.  The fact that the 

relationship between size and TFPR is not stable suggests that there must be some 

other mechanism that drives the TFPR variation. 
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Figure 5: Explaining TFPR with Log Size 

Figure plots fitted values of non-parametric kernel regression of the form TFPRsi = 𝑓(log 𝑆𝑖𝑧𝑒𝑠𝑖) + 𝜖𝑠𝑖 

where f(⋅) is estimated using Gaussian kernel.  Std(log 𝑆𝑖𝑧𝑒) is the cross-sectional standard deviation 

of log 𝑆𝑖𝑧𝑒si. 

 

6.3 Adjustment costs 

Young firms may have higher TFPR due to higher adjustment costs.  That is, a 

young firm who grows rapidly may face higher constraint to raise capital than 

an old firm.  If there is a stable relationship between age of the firm and TFPR 

and the variation of age is greater in 2009 than in 1989, then the variation in 

TFPR can be explained by the variation in age. 

 Figure 6 shows the result of kernel regression of TFPR onto age of the 

firm.  We measure age of a firm by dividing the accumulated depreciation of 



30 

 

their capital by the depreciation per year.  For the relationship between TFPR 

and ‘age’, we need to measure the physical age of the firms’ facilities rather 

than the age of the firm as a legal entity.  Therefore, estimating age using the 

cumulative depreciation is preferred to using the legal age.  The drawback of 

the approach based on depreciation measure is that the depreciation per year 

may not be constant over the life of the capital, causing the potential 

mismeasurement of the vintage of the capital. 

 As we can see in Figure 6, there seem to be no reliable relationship 

between the firm’s age and TFPR.  The relationship is slightly positive in 1989 

while it becomes negative in 2009.  Thus, it is unlikely that the change in the 

distribution of the age is the true driver of the increased variation in TFPR. 

 

Figure 6: Explaining TFPR with Firm Age 
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Figure plots fitted values of non-parametric kernel regression of the form TFPRsi = 𝑓(𝐴𝑔𝑒𝑠𝑖) + 𝜖𝑠𝑖 

where f(⋅) is estimated using Gaussian kernel.  Std(Age) is the cross-sectional standard deviation of 

𝐴𝑔𝑒si. 

 

  Age may be a noisy measure of the growth rate of a firm.  To directly 

measure the firm’s growth, we compute the input growth rate for each firm over the 

last one and three years.  We measure input by Kαs𝐿1−𝛼𝑠 and compute the log 

growth rate for each firm in sample.   

 

Figure 7: Explaining TFPR with Input Growth Rate 

Figure plots fitted values of non-parametric kernel regression of the form TFPRsi = 𝑓(𝐼𝑛𝑝𝑢𝑡𝐺𝑟𝑜𝑤𝑡ℎ𝑠𝑖) +

𝜖𝑠𝑖 where f(⋅) is estimated using Gaussian kernel.  InputGrowthsi is the log change in Ksi
𝛼𝑠𝐿𝑠𝑖

1−𝛼𝑠 from 

the previous year.  Std(InputGrowth) is the cross-sectional standard deviation of 𝐼𝑛𝑝𝑢𝑡𝐺𝑟𝑜𝑤𝑡ℎsi. 

 

  Figure 7 shows the relationship between input growth rate from time 
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t-1 to t and TFPR at time t.  The input growth rate from time t-3 to t shows 

qualitatively the same result, thus we only show the result with the input growth 

over the last one year. 

  As we can see, the relationship between input growth rate and TFPR 

is not stable over time.  In addition, the (cross-sectional) standard deviation of 

input growth in 2009 is similar to that in 1989.  Therefore, the variation in firm 

growth rate with adjustment cost is not a satisfactory explanation about the 

increasing variation of TFPR. 

  The related hypothesis is that young (or small) firms may display 

greater dispersion of TFPR.  If the firms in 2009 are younger or smaller than those 

in 1989, then it will help explain the greater variation of TFPR in 2009. 

 

Figure 8: Distribution of (Log) Number of Employees in 1989 and 2009 
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In this case, we measure the firm size by the number of employees.    Figure 8 

shows that the median firm is smaller in 2009 than 1989.  Thus, if there is a stable 

relationship between TFPR and the number of employees, then it helps explain the 

TFPR variation. 

Figure 9 shows the kernel regression of TFPR on the number of employees for each 

firm in sample.  The relationship between TFPR and the number of employees is 

negative in 1989 while it is slightly positive in 2009.  Thus, the difference in size 

measured by the number of employees will not explain the increasing variation of 

TFPR. 

 

Figure 9: Explaining TFPR with Firm Age 

Figure plots fitted values of non-parametric kernel regression of the form TFPRsi = 𝑓(# 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠𝑠𝑖) +

𝜖𝑠𝑖 where f(⋅) is estimated using Gaussian kernel.  Std(# Employees) is the cross-sectional standard 
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deviation of the number of employees. 

 

 

Figure 10: Distribution of Log Age in 1989 and 2009 

 

Figures 10 shows the distribution of log age of the firms.  We find that the firms in 

2009 are older than those in 1989.  Thus, if anything, the variation of TFPR in 

2009 might have been even greater if the age of the firms were the same as in 1989.   

 

6.4 Unobserved Investments 

Learning by doing hypothesis states that a firm may own 'too much' capital or 

labor in order to improve future productivity rather than to produce output today.    

If that is the case, a firm with low TFPR today should experience higher TFPQ 

growth in the future.   
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Figure 11 shows the result of kernel regression of TFPR on TFPQ growth rate 

next year.  The data seems to support this hypothesis, as there is negative 

relationship between TFPR today versus TFPQ growth rate in the future.  The 

question is whether it explains the wider variation of TFPR in 2009 as opposed to 

1989.  The standard deviation of the future TFPQ growth rate increases from 

0.27% in 1989 to 0.59% in 2009.  While the standard deviation increases by 119% 

over the period, the slope coefficient of the linear regression of TFPR onto TFPQ 

growth is -0.25.  Thus, the increased variation in the future growth opportunity 

can explain as much as 0.25*119%=30% increase of the TFPR variation from 1989 

to 2009.  
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Figure 11: Learning by Doing Effect on TFPR 

Figure plots fitted values of non-parametric kernel regression of the form TFPRsi,t = 𝑓( 𝐴𝑠𝑖,𝑡+1) + 𝜖𝑠𝑖 

where f(⋅)  is estimated using Gaussian kernel.   Asi,t+1 ≡ 𝐴𝑠𝑖,𝑡+1 − 𝐴𝑠𝑖,𝑡  and Std(dTFPQ)  is the 

cross-sectional standard deviation of  Asi,t+1. 

 

 

7 Conclusions 

In this paper, we show that an increase in allocation inefficiency of capital across 

firms is one of the major factors in explaining the low TFP growth rate in Japan during 

the post bubble era.  As a firm can adjust its input level only sluggishly, greater 

uncertainty of the idiosyncratic physical productivity shock to a firm leads to greater 

misallocation of capital among firms.  The remaining question for the future research 
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is what an idiosyncratic productivity shock is and why its volatility increased over the 

period between 1989 and 2009.   
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A1. Derivation of Industry TFP under Log-normality 

 

In this appendix, we simplify the gain from reallocation assuming physical 

productivity and frictions are log-normally distributed. 

Y

Yefficient
= ∏[∑{

𝐴𝑠𝑖

𝐴𝑆
̅̅ ̅

𝑇𝐹𝑃𝑅𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑇𝐹𝑃𝑅𝑠𝑖
}

𝜎−1𝑀𝑠

𝑖=1

]

𝜃𝑆
𝜎−1S

s=1

 

Taking log and define TFPS̃ = log∑ {
𝐴𝑠𝑖

𝐴𝑆̅̅ ̅̅

𝑇𝐹𝑃𝑅𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑇𝐹𝑃𝑅𝑠𝑖
}
𝜎−1

𝑀𝑠
𝑖=1 .  Then 

log𝑌 − log𝑌𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = ∑
𝜃𝑆

𝜎 − 1
𝑇𝐹𝑃𝑆̃

𝑆

𝑠=1

 

 

Let asi = log
𝐴𝑠𝑖𝑀𝑠

1
𝜎−1

𝐴𝑆̅̅ ̅̅
and tsi = log

𝑇𝐹𝑃𝑅𝑠𝑖

𝑇𝐹𝑃𝑅𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅
.  If we assume that asi  and tsi  are jointly 

normally distributed, then  

TFPS̃ = log∑{
𝐴𝑠𝑖

𝐴𝑆
̅̅ ̅

𝑇𝐹𝑃𝑅𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑇𝐹𝑃𝑅𝑠𝑖
}

𝜎−1𝑀𝑠

𝑖=1

= log
1

𝑀𝑆
∑exp((𝜎 − 1)(𝑎𝑠𝑖 − 𝑡𝑠𝑖))

= (𝜎 − 1)𝐸𝑠[𝑎𝑠𝑖 − 𝑡𝑠𝑖] +
1

2
(𝜎 − 1) Vars[𝑎𝑠𝑖 − 𝑡𝑠𝑖] 

where Es[⋅] and Vars[⋅] denote the expectation and variance within industry 𝑠. 

Therefore 

log𝑌 − log𝑌𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = ∑𝜃𝑆𝐸𝑠[𝑎𝑠𝑖 − 𝑡𝑠𝑖]

𝑆

𝑠=1

+
1

2
(𝜎 − 1)∑𝜃𝑆𝑉𝑎𝑟𝑠[𝑎𝑠𝑖 − 𝑡𝑠𝑖]

𝑆

𝑠=1

 

By definition, we have As
̅̅ ̅ = (∑𝐴𝑠𝑖

𝜎−1)
1

𝜎−1 which can be rewritten as 

0 = Es[𝑎𝑠𝑖] +
1

2
(𝜎 − 1)Var_s  [𝑎𝑠𝑖] 

Thus, we have 

log𝑌 − log 𝑌𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = −∑𝜃𝑆𝐸𝑠[𝑡𝑠𝑖]

𝑆

𝑠=1

+
1

2
(𝜎 − 1)∑𝜃𝑆{𝑉𝑎𝑟𝑠[𝑡𝑠𝑖] − 2𝐶𝑜𝑣𝑠(𝑎𝑠𝑖 , 𝑡𝑠𝑖)}

𝑆

𝑠=1

= log∏Es [(
𝑇𝐹𝑃𝑅𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑇𝐹𝑃𝑅𝑠𝑖
)

σ−1

]

θs
σ−1

− (σ − 1)∑θsCovs(𝑎si, tsi) 

 

What matters is not just a variance of tsi but the covariance between 𝑎si and 𝑡si. 

 

We can further work on tsi from the definition 
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log (
TFPRsi

TFPRS
̅̅ ̅̅ ̅̅ ̅̅ ̅) = 𝛼𝑆 log

𝑀𝑅𝑃𝐾𝑠𝑖

𝑀𝑅𝑃𝐾𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + (1 − 𝛼𝑆) log
𝑀𝑅𝑃𝐿𝑠𝑖

𝑀𝑅𝑃𝐿𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅

= αs {− log
1 − 𝜏𝑌𝑆𝑖
1 + 𝜏𝐾𝑆𝑖

+ log∑
1− 𝜏𝑌𝑆𝑖
1 + 𝜏𝐾𝑆𝑖

PSi𝑌𝑆𝑖
𝑃𝑆𝑌𝑆

}

+ (1 − 𝛼𝑠) {− log(1 − 𝜏𝑌𝑠𝑖) + log∑(1 − 𝜏𝑌𝑠𝑖)
𝑃𝑆𝑖𝑌𝑆𝑖
𝑃𝑆𝑌𝑆

} 

Define 

xsi = log(1 − 𝜏𝑌𝑠𝑖) 

ysi = log(
1 − 𝜏𝑌𝑆𝑖
1 + 𝜏𝐾𝑆𝑖

) 

ωsi = log
𝑃𝑆𝑖𝑌𝑆𝑖
𝑃𝑆𝑌𝑆

Ms 

We can rewrite the weighted average as 

∑
1− 𝜏𝑌𝑆𝑖
1 + 𝜏𝐾𝑆𝑖

PSi𝑌𝑆𝑖
𝑃𝑆𝑌𝑆

= Es[exp(𝑦𝑠𝑖 +𝜔𝑠𝑖)] 

∑(1− 𝜏𝑌𝑠𝑖)
𝑃𝑆𝑖𝑌𝑆𝑖
𝑃𝑆𝑌𝑆

= Es[exp(𝑥𝑠𝑖 +𝜔𝑠𝑖)] 

I assume that xsi, 𝑦𝑠𝑖 , 𝑎𝑠𝑖̃ ≡ log𝐴𝑠𝑖 are jointly normally distributed. 

From the cost minimization problem, we have 

Psi𝑌𝑠𝑖
𝑃𝑠𝑌𝑠

=
𝑃𝑠𝑖
1−𝜎

∑𝑃𝑠𝑖
1−𝜎 

Thus 

ωsi = log
𝑃𝑠𝑖
1−𝜎

𝐸[𝑃𝑠𝑖
1−𝜎]

 

Then we can rewrite tsi as 

tsi = 𝛼𝑠{−𝑦𝑠𝑖 + log𝐸𝑠[exp(𝑦𝑠𝑖 +𝜔𝑠𝑖)] } + (1 − 𝛼𝑠){−𝑥𝑠𝑖 + log𝐸𝑠[exp(𝑥𝑠𝑖 +𝜔𝑠𝑖)]} 

As we have E[exp(𝜔𝑠𝑖)] = 1, we can expand the expectation to obtain, 

log𝐸𝑠[exp(𝑦𝑠𝑖 +𝜔𝑠𝑖)] = 𝐸𝑠[𝑦𝑠𝑖] +
1

2
𝑉𝑎𝑟𝑠[𝑦𝑠𝑖] + 𝐶𝑜𝑣𝑠(𝑦𝑠𝑖 , 𝜔𝑠𝑖) 

log𝐸𝑠[exp(𝑥𝑠𝑖 +𝜔𝑠𝑖)] = 𝐸𝑠[𝑥𝑠𝑖] +
1

2
𝑉𝑎𝑟𝑠[𝑥𝑠𝑖] + 𝐶𝑜𝑣𝑠(𝑥𝑠𝑖 , 𝜔𝑠𝑖) 

Now we work on covariance.  That is 

Covs(xsi, 𝜔𝑠𝑖) = 𝐶𝑜𝑣𝑠(𝑥𝑠𝑖 , (1 − 𝜎)𝑝𝑠𝑖) 

Covs(ysi, ωsi) = Covs(ysi, (1 − σ)psi) 

where 

psi = log𝑃𝑠𝑖 = (𝐶𝑜𝑛𝑠𝑡) − 𝛼𝑠𝑦𝑠𝑖 − (1 − 𝛼𝑠)𝑥𝑠𝑖 − 𝑎̃𝑠𝑖 

Therefore 

Covs(xsi, 𝜔𝑠𝑖) = (1 − 𝜎){−𝛼𝑠𝐶𝑜𝑣𝑆(𝑦𝑠𝑖 , 𝑥𝑠𝑖) − (1 − 𝛼𝑠)𝑉𝑎𝑟𝑠(𝑥𝑠𝑖) − 𝐶𝑜𝑣𝑆(𝑎̃𝑠𝑖 , 𝑥𝑠𝑖)} 

Covs(ysi, 𝜔𝑠𝑖) = (1 − 𝜎){−𝛼𝑠𝑉𝑎𝑟𝑠(𝑦𝑠𝑖) − (1 − 𝛼𝑠)𝐶𝑜𝑣𝑆(𝑦𝑠𝑖 , 𝑥𝑠𝑖) − 𝐶𝑜𝑣𝑆(𝑎̃𝑠𝑖 , 𝑦𝑠𝑖)} 

 

Using these equations, we have 
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E[tsi] = 𝛼𝑠 {
1

2
𝑉𝑎𝑟[𝑦𝑠𝑖] + 𝐶𝑜𝑣(𝑦𝑠𝑖 , 𝜔𝑠𝑖)} + (1 − 𝛼𝑠) {

1

2
𝑉𝑎𝑟[𝑥𝑠𝑖] + 𝐶𝑜𝑣(𝑥𝑠𝑖 , 𝜔𝑠𝑖)}

=
1

2
𝛼𝑠𝑉𝑎𝑟(𝑦) +

1

2
(1 − 𝛼𝑠)𝑉𝑎𝑟(𝑥)

+ (1 − 𝜎){−𝛼𝑠
 𝑉𝑎𝑟(𝑦) − 𝛼𝑠(1 − 𝛼𝑠)𝐶𝑜𝑣(𝑥, 𝑦) − 𝛼𝑠𝐶𝑜𝑣(𝑎̃, 𝑦)

− 𝛼𝑠(1 − 𝛼𝑠)𝐶𝑜𝑣(𝑥, 𝑦) − (1 − 𝛼𝑠)
 𝑉𝑎𝑟(𝑥) − (1 − 𝛼𝑠)𝐶𝑜𝑣(𝑎̃, 𝑥)} 

Var[tsi] = 𝛼𝑠
 𝑉𝑎𝑟(𝑦) + (1 − 𝛼𝑠)

 𝑉𝑎𝑟(𝑥) + 2𝛼𝑠(1 − 𝛼𝑠)𝐶𝑜𝑣(𝑥, 𝑦) 

 

Now we compute 

−E[tsi] +
1

2
(𝜎 − 1)𝑉𝑎𝑟[𝑡𝑠𝑖]

= −
1

2
𝛼𝑠𝑉𝑎𝑟(𝑦) −

1

2
(1 − 𝛼𝑠)𝑉𝑎𝑟(𝑥)

+ (𝜎 − 1){−𝛼𝑠
 𝑉𝑎𝑟(𝑦) − 𝛼𝑠(1 − 𝛼𝑠)𝐶𝑜𝑣(𝑥, 𝑦) − 𝛼𝑠𝐶𝑜𝑣(𝑎̃, 𝑦)

− 𝛼𝑠(1 − 𝛼𝑠)𝐶𝑜𝑣(𝑥, 𝑦) − (1 − 𝛼𝑠)
 𝑉𝑎𝑟(𝑥) − (1 − 𝛼𝑠)𝐶𝑜𝑣(𝑎̃, 𝑥)}

+
1

2
(𝜎 − 1)(𝛼𝑠

 𝑉𝑎𝑟(𝑦) + (1 − 𝛼𝑠)
 𝑉𝑎𝑟(𝑥) + 2𝛼𝑠(1 − 𝛼𝑠)𝐶𝑜𝑣(𝑥, 𝑦))

= −
1

2
𝛼𝑠𝑉𝑎𝑟(𝑦) −

1

2
(1 − 𝛼𝑠)𝑉𝑎𝑟(𝑥)

−
1

2
(𝜎 − 1){𝛼𝑠

 𝑉𝑎𝑟(𝑦) + (1 − 𝛼𝑠)
 𝑉𝑎𝑟(𝑥) + 2𝛼𝑠(1 − 𝛼𝑠)𝐶𝑜𝑣(𝑥, 𝑦)}

− (𝜎 − 1){𝛼𝑠𝐶𝑜𝑣(𝑎̃, 𝑦) + (1 − 𝛼𝑠)𝐶𝑜𝑣 (𝑎̃, 𝑥)} 

Now we rewrite the three groups of terms: 

The second row is 

𝛼𝑠
 𝑉𝑎𝑟(𝑦) + (1 − 𝛼𝑠)

 𝑉𝑎𝑟(𝑥) + 2𝛼𝑠(1 − 𝛼𝑠)𝐶𝑜𝑣(𝑥, 𝑦) = Var(αsysi + (1 − αs)xsi) = Vars(tsi) 

The third row is 

𝛼𝑠𝐶𝑜𝑣𝑠(𝑎̃, 𝑦) + (1 − 𝛼𝑠)𝐶𝑜𝑣𝑠 (𝑎̃, 𝑥) = Covs(𝑎̃, αsysi + (1 − αs)xsi) = 𝐶𝑜𝑣𝑠(𝑎𝑠𝑖 , 𝑡𝑠𝑖) 

The extra covariance terms between asi and tsi come from the fact that we 

weight more on bigger firms when computing average.  A greater friction (smaller x,y 

thus bigger t) leads to putting less weight on that firm the average.  This weighting 

scheme makes the average friction higher, and E[−tsi] smaller.  Therefore, we obtain 

the following expression: 

log𝑌 − log 𝑌𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = −∑𝜃𝑆𝐸𝑠[𝑡𝑠𝑖]

𝑆

𝑠=1

+
1

2
(𝜎 − 1)∑𝜃𝑆{𝑉𝑎𝑟𝑠[𝑡𝑠𝑖] − 2𝐶𝑜𝑣𝑠(𝑎𝑠𝑖 , 𝑡𝑠𝑖)}

𝑆

𝑠=1

= −
1

2
(σ − 1)∑θs{Vars[tsi] + 4Covs(𝑎si, tsi)}

S

s=1

−
1

2
∑θs
s=1

(αsVars(ysi) + (1 − αs)Vars(xsi)) 

 We may also impose the identifying assumption for Asi for the data analysis, 

which is Asi =
𝜅𝑆(𝑃𝑠𝑖𝑌𝑠𝑖)

𝜎
𝜎−1

𝐾𝑠𝑖
𝛼𝑠𝐿𝑠𝑖

1−𝛼𝑠
.  Then Covs(𝑎𝑠𝑖 , 𝑡𝑠𝑖) =

𝜎

𝜎−1
𝑉𝑎𝑟𝑠(𝑡𝑠𝑖) holds.  In such cases, the 

efficiency gain is purely a function of the variance of xsi and ysi. 
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A2. Measuring Uncertainty of Idiosyncratic Productivity Shock 

following Cooper and Haltiwanger (2006) 

 

We decompose the earnings shocks using the methodology of Cooper and 

Haltiwanger (2006).  We estimate the economy-wide capital share parameter 

instrumenting on the once and twice lagged capital and twice lagged profits.  The 

residuals split between aggregate profitability shocks and the idiosyncratic shocks.  We 

fit AR(1) model to the idiosyncratic shocks to extract innovation to the idiosyncratic 

profitability shocks. 

 

Table A1: Measuring the Magnitude of Idiosyncratic Profitability Shock 

A: Estimated Result B: Size of Residuals 

θ ρϵ  Year σ(ϵit) σ(ηit) 

0.855 0.924   1989 0.53  0.18  

(0.002) (0.002)   2009 0.70  0.29  

The table shows the result of two-step regressions.  First regression is the panel IV estimates of 

log 𝑆𝑎𝑙𝑒𝑠𝑖𝑡 = 𝜃 log𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑡 + 𝑒𝑖𝑡, where the instruments are log Cap talit−1 , log 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑡−  , log 𝑆𝑎𝑙𝑒𝑠𝑖𝑡− .  

The estimates include time fixed effects.  The second step is ϵit =   𝜖𝑖𝑡−1 +  𝑖𝑡  where ϵit ≡ 𝑒𝑖𝑡 −

1/𝑛∑ 𝑒𝑖𝑡
𝑛
𝑖=1 .  The figures in parenthesis are standard errors. 

 

Table A1 shows the estimated result.  The standard deviation of the shockσ(η) 

becomes 61% larger in 2009 than in 1989.  During the same period, the standard 

deviation of the TFPR becomes 85% larger.  Thus, a significant portion of the TFPR 

variation change can be explained by the greater unexpected shocks to firms’ 

profitability.  The remaining component of the TFPR variation may be either due to 

greater cost of investment or more learning-by-doing activities in 2009. 
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A3. Implementing Kernel Regression 

 

To analyze the source of TFPR variation, I run non-parametric kernel regression of 

the form 

 

TFPRsi = 𝑓(𝑧𝑠𝑖) + 𝜖𝑠𝑖 

 

where the function ff(zsi) is estimated non-parametrically using Gaussian kernel.

 Specifically, the kernel regression estimator at z0 is given by 

 

f(z0) =

1

 
∑  ((𝑧𝑠𝑖 − 𝑧0)/ℎ)𝑇𝐹𝑃𝑅𝑠𝑖
 
𝑖=1

1

 
∑  ((𝑧𝑠𝑖 − 𝑧0)/ℎ)
 
𝑖=1

= ∑𝑤𝑠𝑖𝑇𝐹𝑃𝑅𝑠𝑖

 

𝑖=1

 

 

where  (⋅) is the normal probability density function and h is the bandwidth of the 

kernel.   

The optimal bandwidth is chosen to minimize the cross-validation CV (h), 

 

CV(h) ≡ ∑(𝑇𝐹𝑃𝑅𝑠𝑖 − 𝑓−𝑖(𝑧𝑠𝑖))
 
 (𝑧𝑠𝑖)

 

i=1

 

where 

𝑓−i(𝑧𝑠𝑖) =
∑ 𝑤𝑠 𝑇𝐹𝑃𝑅𝑠 
 
  𝑖

∑ 𝑤𝑠 
 
  𝑖

 

and  (⋅) is an indicator function which is one if zsi is between 5 percentile and 95 

percentile of the distribution and zero otherwise.   

The idea of cross-validation procedure is that one has to strike a balance 

between minimizing errors and improving efficiency of an estimate.  Putting a large 

weight on TFPRsi to estimate 𝑓(zsi) will reduce an error but will not use as much 

information from the adjacent observations TFPRs , resulting in inefficiency.  We 

penalize inefficiency by using 𝑓−𝑖(𝑧𝑠𝑖), or a leave one-out estimates in computing CV (h).  

Minimizing CV (h) amounts to choosing an optimal balance between error minimization 

and pursuit of efficiency.   
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