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Abstract
Unlike symmetric kernels, so far exploring asymptotics on asymmetric ker-

nels has relied on diversi�ed approaches. This paper proposes a family of the
Generalized Gamma kernels that is built on the probability density function
of the Generalized Gamma distribution (Stacy, E.W. (1962), �A Generalization
of the Gamma Distribution�, Annals of Mathematical Statistics, 33, 1187-1192)
and a few common conditions. The family can generate asymmetric kernels
that share appealing properties with the Modi�ed Gamma kernel (Chen, S.X.
(2000), �Probability Density Function Estimation Using Gamma Kernels�, An-
nals of the Institute of Statistical Mathematics, 52, 471-480). Asymptotics on
the kernels generated from the family can be delivered by manipulating the
conditions directly, as with symmetric kernels.
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1 Introduction

Researchers and policy makers are often interested in the distributions of nonneg-

ative economic and �nancial variables including incomes, wages, short-term interest

rates, and insurance claims. The distributions are empirically characterized by two

stylized facts, namely, (i) a natural boundary at the origin and (ii) concentration

of observations near the boundary and a long tail with sparse data. When their

parametric speci�cations are found to be inappropriate, we resort to nonparametric

density estimation. However, in estimating the distributions with symmetric ker-

nels, we must make two distinct modi�cations for the standard smoothing technique

simultaneously. For (i), boundary correction methods should be employed; see, for

instance, Section 3 of Karunamuni and Alberts (2005) for a concise review of the

methods. For (ii), adaptive smoothing such as variable bandwidth methods (e.g.

Abramson, 1982) would be a remedy.

Recently, asymmetric kernels with support on [0;1) (e.g. Chen, 2000; Jin and

Kawczak, 2003; Scaillet, 2004) have emerged as a viable alternative that can accom-

modate the stylized facts. Although the kernels are relatively new in the literature,

several papers report favorable evidence from applying them to empirical models

in economics and �nance; see, for instance, Section 1 of Gospodinov and Hirukawa

(2012) for a non-exhaustive list of the papers. The reason why asymmetric kernels

tend to work well for the distributions with two stylized facts is their property as a

combination of a boundary correction device and adaptive smoothing that has e¤ect

similar to the variable bandwidth methods.

A cumbersome aspect of asymmetric kernels, however, is that so far exploring their

asymptotic properties has relied on kernel-speci�c and thus diversi�ed approaches.

In contrast, symmetric kernels are built on a set of common conditions, and their
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asymptotic properties can be implied straightforwardly by the conditions. Then, this

paper proposes a new class of asymmetric kernels that consists of a speci�c functional

form and a set of common conditions. Our aim is that as long as an asymmetric kernel

is generated from this class, we can deliver its asymptotic properties by manipulating

the conditions directly, rather than employing the techniques peculiar to the kernel.

A key issue of establishing the new class of asymmetric kernels is to choose the

shape or functional form. While an apparent shape restriction (i.e. symmetry about

the origin) is imposed on symmetric kernels, there is no guidance on shapes of asym-

metric kernels; actually, any shapes are admissible as long as the kernels have support

on [0;1). Recognizing that most of the papers on asymmetric kernels report su-

perior �nite sample performance of the Modi�ed Gamma kernel by Chen (2000), we

consider the kernel a reasonable benchmark of the functional form. Accordingly,

among �close-cousins�of the Gamma probability density function (�pdf�), the pdf of

the Generalized Gamma distribution (Stacy, 1962) is chosen as the functional form.

Combining the pdf with a set of common conditions, we �nally de�ne a family of the

Generalized Gamma (�GG�) kernels. As special cases, the GG kernels nest not only

the Modi�ed Gamma kernel but also the newly proposed Weibull and Nakagami-m

kernels, which are built on the Weibull and Nakagami-m (Nakagami, 1943, 1960)

pdfs, respectively.

The GG kernels are designed to preserve all appealing properties that the Modi�ed

Gamma kernel possesses. First, by construction, the GG kernels are free of bound-

ary bias and always generate nonnegative density estimates everywhere. Second,

when best implemented, each GG density estimator attains Stone�s (1980) optimal

convergence rate in the mean integrated squared error within the class of nonnegative

kernel density estimators. Third, the leading bias over the interior region for each GG
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density estimator contains only the second-order derivative of the true density over

the interior region, whereas the one for density estimators using some other asym-

metric kernels (e.g. the Gamma kernel by Chen, 2000) consists of terms involving the

�rst- and second-order density derivatives. Fourth, the variance of the GG estimator

tends to decrease as the design point moves away from the boundary. This property

is particularly advantageous to estimating the distributions that have a long tail with

sparse data. It is worth emphasizing that these properties can be demonstrated by

manipulating the common conditions directly.

This paper also demonstrates three additional properties of the GG density es-

timator. While the �rst property, applicability of two multiplicative bias correction

techniques studied in Hirukawa (2010) and Hirukawa and Sakudo (2014), is based on

random sampling, the remaining two properties allow for dependent sampling. After

the GG density estimator using weakly dependent data is shown to admit the same

�rst-order bias and variance approximations as those using independent observations,

it is proven that the density estimator is consistent even when the true density be-

comes unbounded at the boundary. The Gamma and Modi�ed Gamma kernels are

known to share all three properties, and thus it is demonstrated that all in all, the

GG kernels are endowed with the same attractive properties.

The remainder of this paper is organized as follows. Section 2 provides the de�n-

ition of a family of the GG kernels and introduces three special cases. Convergence

properties of the GG density estimator are also provided. Section 3 investigates three

appealing properties of the GG density estimator. Section 4 conducts Monte Carlo

simulations to examine �nite sample properties of the GG density estimator. Section

5 summarizes the main results of the paper and suggests some research extensions.

Proofs of Theorems 1 and 2 are given in the Appendix. Besides, proofs of Theorems
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4-6 and comprehensive simulation results are available on the �rst author�s webpage.

This paper adopts the following notational conventions. � (a) =
R1
0
ya�1 exp (�y) dy

(a > 0) is the gamma function; 1 f�g signi�es an indicator function; and b�c denotes

the integer part. The expression �X d
= Y �reads �A random variable X obeys the

distribution Y .� The expression �Xn � Yn�is used whenever Xn=Yn ! 1 as n!1.

Lastly, in order to describe di¤erent asymptotic properties of an asymmetric ker-

nel estimator across positions of the design point x > 0, we denote by �interior x�

and �boundary x�a design point x that satis�es x=b ! 1 and x=b ! � for some

0 < � <1 as n!1, respectively.

2 A Family of the Generalized Gamma Kernels

2.1 De�nition

Let Y be distributed by the GG distribution GG (�; �; 
). Then, Y has the pdf

p (y;�; �; 
) =

y��1 exp f� (y=�)
g

��� (�=
)
1 fy � 0g : (1)

It is known that the m-th uncentered moment of Y is given by

E (Y m) = �m
� f(�+m) =
g

� (�=
)
: (2)

We now provide the de�nition of a family of the GG kernels that consists of several

common conditions. Before proceeding, it could be bene�cial to relate the de�nition

to probability density estimation. Below we present a set of regularity conditions for

asymmetric kernel density estimation.

Assumption 1. The random sample fXigni=1 is drawn from a univariate distribution

with a probability density function f having support on [0;1).

Assumption 2. f is twice continuously di¤erentiable.
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Assumption 3. The smoothing parameter b (= bn > 0) satis�es b + (nb)
�1 ! 0 as

n!1.

To generate a kernel from the pdf (1), we allow (�; �; 
) to be a function of

the design point x > 0 and the smoothing parameter b, as in Chen (2000), Jin

and Kawczak (2003) and Scaillet (2004). To put it another way, whenever we

refer to the triplet (�; �; 
), it should be interpreted as a short-handed notation of

(�; �; 
) = (�b (x) ; �b (x) ; 
b (x)) unless otherwise noted. Let the crude GG kernel

be KGG0 (u;x; b) := p (u;�; �; 
). Given the random sample fXigni=1, we have the

density estimator f̂GG0 (x) = (1=n)
Pn

i=1KGG0 (Xi;x; b).

Let #x
d
= GG (�; �; 
). Under Assumptions 2-3, a second-order Taylor expansion

of E
n
f̂GG0 (x)

o
around #x = x yields E

n
f̂GG0 (x)

o
= f (x) + E (#x � x) f 0 (x) +

(1=2)E (#x � x)2 f 00 (x) + o
�
E (#x � x)2

	
. It follows that unless E (#x) = x exactly

(at least for interior x), the leading bias of f̂GG0 would contain the term involving f 0,

which is less desirable. Although there are numerous choices of (�; �; 
) that can

achieve E (#x) = x, we adopt the simplest resolution that we set � = x for interior

x and employ the pdf of GG (�; �� (�=
) =� f(�+ 1) =
g ; 
) (which can be obtained

by the change of variable Z := [� (�=
) =� f(�+ 1) =
g]Y in (1)) as the kernel. In

the end, we reach the following de�nition of a family of the GG kernels.

De�nition 1. Let (�; �; 
) = (�b (x) ; �b (x) ; 
b (x)) 2 R3+ be a continuous function

of the design point x and the smoothing parameter b. For such (�; �; 
), consider

the pdf of GG (�; �� (�=
) =� f(�+ 1) =
g ; 
), i.e.

KGG (u;x; b) =


u��1 exp

�
�
�

u

��(�
 )=�(
�+1

 )

�
�
n
��
�
�



�
=�
�
�+1



�o�
�
�
�



� 1 fu � 0g : (3)
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This pdf is said to be a family of the GG kernels if it satis�es each of the following

conditions:

Condition 1. � =
�
x for x � C1b
'b (x) for x 2 [0; C1b)

, where 0 < C1 <1 is some constant,

the function 'b (x) satis�es C2b � 'b (x) � C3b for some constants 0 < C2 �

C3 <1, and the connection between x and 'b (x) at x = C1b is smooth.

Condition 2. �; 
 � 1, and for x 2 [0; C1b), � satis�es 1 � � � C4 for some

constant 1 � C4 <1. Moreover, connections of � and 
 at x = C1b, if any,

are smooth.

Condition 3. Mb (x) :=
�(�
 )�(

�+2

 )

f�(�+1
 )g
2 =

�
1 + (C5=x) b+ o (b) for x � C1b
O (1) for x 2 [0; C1b)

, for

some constant 0 < jC5j <1.

Condition 4. Hb (x) :=
�(�
 )�(

2�

 )

21=
�(�+1
 )�(
2��1

 )

=

�
1 + o (1) for interior x
O (1) for boundary x

.

Condition 5. Ab;� (x) :=
�

�(�+1
 )

�

���1
�f �(��1)+1
 g

�
�(��1)+1


 f�(�
 )g
2��1

�
�
VI (�) (xb)

1��
2 for interior x

VB (�) b
1�� for boundary x

,

� 2 R+, where constants 0 < VI (�) ; VB (�) <1 depend only on �.

Conditions 1 and 2 form a legitimate kernel from the GG pdf. It follows from

'b (x) = O (b) uniformly on [0; C1b) in Condition 1 that the kernel is well-de�ned in

the vicinity of the origin. While � � 1 in Condition 2 also ensures boundedness of the

kernel near the origin, 
 � 1 controls the tail-behavior of the kernel and establishes

an exponential rate of the tail decay. The condition also allows for each of � and 
 to

be a piecewise function of (x; b) like �, where the connection is made at x = C1b; the

common connection point simpli�es asymptotic analyses substantially. In addition,

smooth connection requirements in Condition 1 and 2 are inspired by the construction

of the Modi�ed Gamma kernel; see p.473 of Chen (2000) for details. Moreover,
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Condition 3 and Conditions 4 and 5 are the requirements for valid approximations to

the bias and variance of the GG density estimator

f̂GG (x) =
1

n

nX
i=1

KGG (Xi;x; b) ;

respectively. Although all the common conditions appear to be high-level ones, it is

not hard to �nd a few special cases that satisfy them. Examples of the GG kernels

are provided shortly.

2.2 Convergence Properties of Probability Density Estimat-
ors Using the GG Kernels

2.2.1 Local Property

Bias-Variance Tradeo¤. Before providing examples of the GG kernels, readers

may wonder whether the kernels are a truly legitimate one, i.e. they can yield a

consistent density estimator. To answer this question, we begin this section with

presenting the theorem on approximations to the bias and variance of f̂GG (x).

Theorem 1. Under Assumptions 1-3, the bias of f̂GG (x) can be approximated by

Bias
n
f̂GG (x)

o
� B1 (x; f) b, where

B1 (x; f) =

�
(C5=2)xf

00 (x) for x � C1b
�b (x) f

0 (x) for x 2 [0; C1b)
;

and �b (x) = f'b (x)� xg =b = O (1). On the other hand, the variance of f̂GG (x)

can be approximated by

V ar
n
f̂GG (x)

o
�
( �

nb1=2
��1

VI (2) f (x) =
p
x for interior x

(nb)�1 VB (2) f (x) for boundary x
:

The theorem states that Conditions 1-5 do lead to familiar properties of asym-

metric kernel density estimators.1 By construction, f̂GG (x) is free of boundary

1Conditions 1-5 even establish approximations to the bias and variance of nonparametric regres-
sion estimators (e.g. local constant and local linear estimators) using the GG kernels.
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bias and nonnegative everywhere. The bias of f̂GG (x) is O (b), and its variance is

O
n�
nb1=2

��1o
for interior x and O

�
(nb)�1

	
for boundary x.

Furthermore, as pointed out by Chen (2000) and Scaillet (2004), a unique feature

of asymmetric kernel density estimators is that the variance coe¢ cient decreases as x

increases. This is shared with f̂GG (x) in that VI (2) f (x) =
p
x decreases as the design

point x moves away from the boundary. The shrinking variance coe¢ cient re�ects

that more data points can be pooled to smooth in areas with fewer observations.

This property is particularly advantageous to estimating the distributions that have

a long tail with sparse data, such as those of the economic and �nancial variables

mentioned at the beginning of Section 1.

Mean Squared Error (�MSE�). For interior x, the MSE of f̂GG (x) can be ap-

proximated by

MSE
n
f̂GG (x)

o
� b2

�
C25
4

�
x2 ff 00 (x)g2 + VI (2)

nb1=2
f (x)p
x
: (4)

The smoothing parameter value that minimizes the right-hand side of (4) is

b�GG =

�
VI (2)

C25

f (x)

ff 00 (x)g2
�2=5

x�1n�2=5: (5)

Observe that the MSE-optimal smoothing parameter is O
�
n�2=5

�
= O (h�2), where

h� is the MSE-optimal bandwidth for density estimators using nonnegative symmetric

kernels. Therefore, when best implemented, the approximation to the MSE becomes

MSE�
n
f̂GG (x)

o
� 5

4

�
C25
�1=5 fVI (2)g4=5 ff 00 (x)g2=5 ff (x)g4=5 n�4=5: (6)

Observe that MSE�
n
f̂GG (x)

o
depends only on f (x) and not on x itself. The

optimal MSE of f̂GG (x) for interior x becomes O
�
n�4=5

�
, which is also the optimal

convergence rate in the MSE of nonnegative symmetric kernel density estimators.
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On the other hand, for boundary x, MSE
n
f̂GG (x)

o
= O (b2 + n�1b�1), which yields

the MSE-optimal smoothing parameter byGG = O
�
n�1=3

�
and the optimal MSE of

O
�
n�2=3

�
.

2.2.2 Global Property

The inferior rate in the optimal MSE of f̂GG (x) for boundary x does not a¤ect its

global property. If
R1
0
fxf 00 (x)g2 dx and

R1
0
ff (x) =

p
xg dx are both �nite, then

applying the trimming argument in Chen (2000, p.476) approximates the mean in-

tegrated squared error (�MISE�) of f̂GG (x) as

MISE
n
f̂GG (x)

o
� b2

�
C25
4

�Z 1

0

fxf 00 (x)g2 dx+ VI (2)
nb1=2

Z 1

0

f (x)p
x
dx: (7)

The smoothing parameter value that minimizes the right-hand side of (7) is

b��GG =

"
VI (2)

R1
0
ff (x) =

p
xg dx

C25
R1
0
fxf 00 (x)g2 dx

#2=5
n�2=5: (8)

Therefore, when best implemented, the approximation to the MISE becomes

MISE��
n
f̂GG (x)

o
� 5

4

�
C25

Z 1

0

fxf 00 (x)g2 dx
�1=5 �

VI (2)

Z 1

0

f (x)p
x
dx

�4=5
n�4=5:

Note that O
�
n�4=5

�
is the optimal convergence rate of the MISE within the class of

nonnegative kernel estimators in Stone�s (1980) sense.

2.2.3 A Note on Implementation

Choosing the smoothing parameter b is an important practical issue. Below we

consider a very simple, Silverman�s (1986) rule-of-thumb type choice rule. Al-

though in principle the rule is built on the MISE (7) as the criterion, we make

a couple of modi�cations. First, the unknown f is replaced by a known refer-

ence density. For simplicity, we choose the pdf of G (�; !) (�; ! > 0), i.e. g (x) =

9



x��1 exp (�x=!)1 fx � 0g = f!�� (�)g, as the reference. Second, the criterion is

modi�ed to the asymptotic weighted mean integrated squared error (�AWMISE�)

AWMISE
n
f̂GG (x)

o
:= b2

�
C25
4

�Z 1

0

fxg00 (x)g2w (x) dx+VI (2)
nb1=2

Z 1

0

g (x)p
x
w (x) dx;

where the weighting function w (x) � 0 must be chosen to ensure �niteness of two

integrals. Given the speci�cation of g (x), it turns out that w (x) = x3 ful�lls this

requirement. Then, the AWMISE is simpli�ed to

AWMISE
n
f̂GG (x)

o
= b2

�
C25C�� (2�)

4��2 (�)

�
+

1

nb1=2

�
VI (2)!

5=2� (�+ 5=2)

� (�)

�
;

where

C� =
1

4
(�� 2)2 (�� 1)2 � (�� 2) (�� 1)2 (�)

+
1

2
(3�� 4) (�� 1) (�)

�
�+

1

2

�
� (�� 1) (�)

�
�+

1

2

�
(�+ 1)

+
1

4
(�)

�
�+

1

2

�
(�+ 1)

�
�+

3

2

�
:

As a consequence, the AWMISE-optimal smoothing parameter is given by

bzzGG =

�
4��1VI (2)!

5=2� (�) � (�+ 5=2)

C25C�� (2�)

�2=5
n�2=5:

In practice, parameters (�; !) need to be replaced by their method-of-moments es-

timates (�̂; !̂).2

It would be possible to choose b in a more sophisticated manner. For instance,

replacing two integrals in (7) with their nonparametric estimators using the GG ker-

nels, we could derive an analog to the solve-the-equation plug-in method by Sheather

and Jones (1991). Alternatively, we may rely on the cross-validation method (e.g.

Bouezmarni and Rombouts, 2010, p.250). Investigating these methods is left for our

future research.
2Simulation results of GG density estimators with the rule-of-thumb smoothing parameters

plugged in are available on the �rst author�s webpage.
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2.3 Examples of the GG Kernels

This section introduces three special cases of the GG kernels. The sole reason why the

three kernels are listed as examples is that for each of these kernels, approximations

to the gamma functions that appear in Mb (x), Hb (x) and Ab;� (x) in Conditions 3-5

are readily available; see the proof of Theorem 2 in Appendix for details.

It is worth emphasizing that there could be many other examples belonging to

this family. As Stacy (1962, p.1187) states, for instance, functions of a standard

normal variate (e.g. its positive even powers, its modulus, and all positive powers of

its modulus) will generate the GG kernels. Moreover, for a given pdf, choices of the

functional forms of (�; �; 
) may not be unique, as long as they satisfy Conditions

1-5; in other words, we could even generate two or more kernels from the same pdf

by making changes in (�; �; 
).

2.3.1 Examples

Modi�ed Gamma Kernel. The Modi�ed Gamma (�MG�) kernel in Chen (2000)

turns out to be an immediate example of the GG kernels. Put

(�; �) =

( �
x
b
; x
�

for x � 2b�
1
4

�
x
b

�2
+ 1; x

2

4b
+ b
�
for x 2 [0; 2b)

and 
 = 1 in (3). Then, it collapses to

KGG (u;x; b) =
u��1 exp f�u= (�=�)g

(�=�)� � (�)
1 fu � 0g ; (9)

which is the pdf of the Gamma distribution G (�; �=�). Observe that � = �b (x) in

Chen (2000, p.473) and �=� = b. It follows that the above kernel �nally reduces to

the MG kernel

KMG(�b(x);b) (u) =
u�b(x)�1 exp (�u=b)
b�b(x)� f�b (x)g

1 fu � 0g :
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Weibull Kernel. To obtain the Weibull (�W�) kernel, let

(�; �) =

8<:
�q

2x
b
; x
�

for x � 2b�
1
2

�
x
b

�
+ 1; x

2

4b
+ b
�
for x 2 [0; 2b)

and 
 = � in (3). Then, it becomes

KGG (u;x; b) =
�u��1 exp

h
�
n

u
�=�(1+1=�)

o�i
f�=� (1 + 1=�)g� 1 fu � 0g :

Because the right-hand side is the pdf of theWeibull distributionW (�; �=� (1 + 1=�)),

the W kernel can be de�ned as3

KW (�;�=�(1+1=�)) (u)

=
�

�=� (1 + 1=�)

�
u

�=� (1 + 1=�)

���1
exp

�
�
�

u

�=� (1 + 1=�)

���
1 fu � 0g :

Nakagami-m Kernel. Use exactly the same (�; �) as for the MG kernel but put


 = 2 in (3). Then, it reduces to

KGG (u;x; b) =
2u��1 exp

h
�
�
u=
�
��
�
�
2

�
=�
�
�+1
2

��	2i�
��
�
�
2

�
=�
�
�+1
2

�	�
�
�
�
2

� 1 fu � 0g ;

which is the pdf of the Nakagami-m distributionNM
�
�=2; (�=2) [�� (�=2) =� f(�+ 1) =2g]2

�
due to Nakagami (1943, 1960).4 This distribution is frequently applied in tele-

communications engineering as the distribution that can describe signal intensity of

3This de�nition di¤ers from the one given in Kuruwita, Kulasekera and Padgett (2010, Table 1),
who construct their Weibull kernel from a di¤erent motivation. Apparently, their de�nition

KW (u;x; b) =
1

bx

�u
x

�1=b�1
exp

�
�
�u
x

�1=b�
1 fu � 0g

tends to be unbounded near the origin.
4The pdf of NM (�; !) (� � 1=2; ! > 0) is

p (y;�; !) =
2��

!�� (�)
y2��1 exp

�
��
!
y2
�
1 fy � 0g :

It is widely recognized that the Nakagami-m distribution was �rst proposed in Nakagami (1960).
In reality, however, the distribution originates as early as in Nakagami (1943).
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short-wave fading. In the end, the Nakagami-m (�NM�) kernel is de�ned as

KNM(�=2;(�=2)[��(�=2)=�f(�+1)=2g]2) (u)

=
2
�
�
2

��=2h�
�
2

� �
��
�
�
2

�
=�
�
�+1
2

�	2i�=2
�
�
�
2

�u2(�2 )�1 exp
"
�

�
2�

�
2

� �
��
�
�
2

�
=�
�
�+1
2

�	2u2
#
1 fu � 0g :

FIGURE 1 ABOUT HERE

2.3.2 Asymptotic Results on Density Estimators Using the MG, W and
NM Kernels

Figure 1 plots the shapes of the MG, W and NM kernels at four di¤erent design

points (x = 0; 1; 2; 4) at which the smoothing is performed. For reference, the

Gamma (�G�) kernel (Chen, 2000) is also drawn in each panel.5 It is worth noting

that for all plotted functions, the value of the smoothing parameter is �xed at b = 0:2.

When smoothing is made at the origin (Panel (a)), the NM kernel collapses to a half-

normal pdf, whereas all others reduce to an exponential pdf. As the design point

moves away from the boundary (Panels (b)-(d)), the shape of each kernel varies and

becomes �atter; in other words, each kernel changes the amount of smoothing in a

locally adaptive manner. It is worth emphasizing that unlike variable bandwidth

methods (e.g. Abramson, 1982), adaptive smoothing for these kernels is achieved by

a single smoothing parameter, which makes them much more appealing in empirical

work. We can also observe that the more distant the design point is from the

boundary, the closer the shapes become to a symmetric one; in particular, shapes of

the NM kernel become almost symmetric for a large x, as its functional form suggests.

Convergence properties of density estimators using the MG, W and NM kernels

are presented in Theorem 2 below. Obviously, the functional form of (�; �; 
) for

5This kernel does not belong to the GG kernels, because it can be obtained by setting (�; �) =
(x=b+ 1; x+ b) in (9).
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each of the three kernels satis�es Conditions 1-2. Hence, to demonstrate Theorem

2, it su¢ ces to check that Conditions 3-5 hold for each kernel.

Theorem 2. Let f̂j (x) be the probability density estimator using the kernel j 2

fMG;W;NMg. Then, under Assumptions 1-3, the bias and variance of f̂j (x) can

be approximated by Bias
n
f̂j (x)

o
� B1;j (x; f) b and

V ar
n
f̂j (x)

o
�
( �

nb1=2
��1

VI;j (2) f (x) =
p
x for interior x

(nb)�1 VB;j (2) f (x) for boundary x
;

where VB;j (2) can be found in Appendix, and values of C5;j and explicit forms of

B1;j (x; f) and VI;j (2) are as follows:

B1;j (x; f)
j C5;j x � 2b x 2 [0; 2b) VI;j (2)
MG 1 (1=2)xf 00 (x) �b (x) f

0 (x) 1= (2
p
�)

W �2=12 (�2=24)xf 00 (x) �b (x) f
0 (x) 1=

�
2
p
2
�

NM 1=2 (1=4)xf 00 (x) �b (x) f
0 (x) 1=

p
2�

Moreover, �b (x) = f(1=2) (x=b)� 1g
2 = O (1) in this case.

It follows from (5) and Theorem 2 that the MSE-optimal smoothing parameters

of three kernel density estimators for interior x are

b�MG =

�
1

2
p
�

f (x)

ff 00 (x)g2
�2=5

x�1n�2=5;

b�W =

"
2�3=2

�
12

�2

�2
f (x)

ff 00 (x)g2

#2=5
x�1n�2=5;

b�NM =

�
23=2p
�

f (x)

ff 00 (x)g2
�2=5

x�1n�2=5:

Recognize that b�NM = 2b�MG holds; even b
��
NM = 2b��MG is the case by (8), where

b��NM and b��MG are MISE-optimal smoothing parameters of the NM and MG kernels,

respectively. Then, by (6), the optimal-MSEs of f̂MG (x) and f̂NM (x) for interior x

14



have the relation

MSE�
n
f̂MG (x)

o
� MSE�

n
f̂NM (x)

o
� 5

47=5

�
1

�

�2=5
ff (x)g4=5 ff 00 (x)g2=5 n�4=5: (10)

The right-hand side is also the optimal-MSE of the density estimator using the Gaus-

sian kernel. In other words, when best implemented, density estimators using these

kernels become �rst-order asymptotically equivalent, and both kernels on [0;1) are

in a sense equivalent to the Gaussian kernel on (�1;1). In contrast, when best

implemented, the MSE of f̂W (x) for interior x can be approximated by

MSE�
n
f̂W (x)

o
� 5

47=5

�
�2

24

�2=5
ff (x)g4=5 ff 00 (x)g2=5 n�4=5: (11)

Comparing the factors of (10) and (11) reveals that
�
5=47=5

�
(1=�)2=5 � 0:454178 : : :

and
�
5=47=5

�
(�2=24)

2=5 � 0:503178 : : : Therefore, we can see that f̂W (x) is slightly

ine¢ cient than f̂MG (x) and f̂NM (x) under the best-case scenario.

3 Properties of the GG Density Estimator

This section explores three properties of the GG density estimator other than those

described in Section 2.2. After demonstrating applicability of multiplicative bias

correction techniques for independent observations, we show the remaining two prop-

erties for weakly dependent observations, namely, validity of the �rst-order bias and

variance approximations in GG density estimation that are stated in Theorem 1, and

weak consistency of GG density estimators when the true density is unbounded at the

origin. It is known that the G and MG kernels possess all these properties. There-

fore, this section establishes that these appealing properties essentially inhere in the

GG kernels.
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3.1 Nonparametric Multiplicative Bias Correction for GG
Density Estimation

We start with examining whether GG density estimators in general admit multiplic-

ative bias correction (�MBC�) techniques. While Hagmann and Scaillet (2007) and

Gustafsson et al. (2009) propose semiparametric MBC procedures using asymmetric

kernels, we concentrate on two classes of nonparametric MBC methods studied in

Hirukawa (2010) and Hirukawa and Sakudo (2014). The �rst class of MBC estimat-

ors, originally proposed by Terrell and Scott (1980), is de�ned as

~fTS;GG (x) =
n
f̂GG;b (x)

o 1
1�c
n
f̂GG;b=c (x)

o� c
1�c
;

where, f̂GG;b (x) and f̂GG;b=c (x) signify GG density estimators using smoothing para-

meters b and b=c, and c 2 (0; 1) is some predetermined constant that does not depend

on the design point x. The second class of MBC estimators due to Jones, Linton

and Nielsen (1995) is implied by the identity f (x) = f̂GG;b (x)
n
f (x) =f̂GG;b (x)

o
and

de�ned as

~fJLN;GG (x) = f̂GG;b (x)

(
1

n

nX
i=1

KGG (Xi;x; b)

f̂GG;b (Xi)

)
:

Both ~fTS;GG (x) and ~fJLN;GG (x) always generate nonnegative density estimates every-

where by construction.

To develop convergence properties of MBC estimators, we modify Assumptions

2-3 as follows. Discussions on these assumptions can be found in Hirukawa (2010)

and Hirukawa and Sakudo (2014).

Assumption 2a. f has four continuous and bounded derivatives, and f (x) > 0 for

a given design point x > 0.

Assumption 3a. The smoothing parameter b satis�es b+ (nb3)�1 ! 0 as n!1.
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The next theorem refers to acceleration in bias convergence via the bias correction

methods. The proof is similar to the ones for Theorems 1-2 of Hirukawa and Sakudo

(2014), and this it is omitted.

Theorem 3. If Assumptions 1, 2a and 3a hold, and E
n
f̂GG (x)

o
admits the expan-

sion E
n
f̂GG (x)

o
= f (x) + B1 (x; f) b + B2 (x; f) b

2 + o (b2), where B1 (x; f) (which

can be found in Theorem 1) and B2 (x; f) are kernel-speci�c functions depending on

x and derivatives of f , then the bias and variance of ~fTS;GG (x) can be approximated

by

Bias
n
~fTS;GG (x)

o
� 1

c (1� c)p (x) b
2 :=

1

c (1� c)

�
1

2

�
B21 (x; f)

f (x)

�
�B2 (x; f)

�
b2;

V ar
n
~fTS;GG (x)

o
=

( �
nb1=2

��1
� (c)VI (2) f (x) =

p
x+ o

n�
nb1=2

��1o
for interior x

O
�
(nb)�1

	
for boundary x

;

where

� (c) =

�
1 + c5=2

�
(1 + c)1=2 � 2

p
2c3=2

(1 + c)1=2 (1� c)2
:

Moreover, the bias and variance of ~fJLN;GG (x) can be approximated by

Bias
n
~fTS;GG (x)

o
� q (x) b2 := �f (x)B1 (x; h) b2;

V ar
n
~fJLN;GG (x)

o
=

( �
nb1=2

��1
VI (2) f (x) =

p
x+ o

n�
nb1=2

��1o
for interior x

O
�
(nb)�1

	
for boundary x

;

where B1 (x; h) is obtained by replacing f in B1 (x; f) with h = h (x; f) := B1 (x; f) =f (x).

As the theorem suggests, whether the two MBC techniques may accelerate the

bias convergence from O (b) to O (b2) depends crucially on whether the second-order

term in Bias
n
f̂GG (x)

o
is O (b2). It is worth noting that Conditions 1-5 provide

no guidance on the order of magnitude in the second-order bias term. For instance,

as indicated in the proof of Theorem 2, the second-order term in Bias
n
f̂W (x)

o
is
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O
�
b3=2

�
. Because both MBC techniques merely improve the bias convergence up to

O
�
b3=2

�
, the theorem excludes such inferior cases.6

In contrast, for the MG and NM kernels, each MBC technique ameliorates their

bias convergence to O (b2). Explicit forms of p (x) and q (x) for the NM kernel are

pNM (x) =

8>>>><>>>>:
x2

32
ff 00(x)g2
f(x)

� 1
8

n
1
2
f 0 (x) + x

3
f 00 (x) + x2

4
f 000 (x)

o
for x � 2b

1
2

"
f�b(x)f 0(x)g

2

f(x)
�
(�
�b (x) +

x
b

�2 �� �b(x)+x=b2

�
�
�
�b(x)+x=b

2
+1
�

�
�
�
�b(x)+x=b+1

2

��2 � 2
�
x
b

�
�b (x) +

�
x
b

�2)#
for x 2 [0; 2b)

;

qNM (x) =

8<: �f (x) x
4

n
x
4
f 00(x)
f(x)

o00
for x � 2b

�f (x) �b (x)
n
�b(x)f

0(x)
f(x)

o00
for x 2 [0; 2b)

;

where �b (x) can be found in Theorem 2; see Hirukawa and Sakudo (2014) for func-

tional forms of p (x) and q (x) for the MG kernel. It follows that MSEs of ~fJLN;MG (x)

and ~fJLN;NM (x) for interior x can be approximated by

MSE
n
~fJLN;MG (x)

o
�

�
�f (x) x

2

�
x

2

f 00 (x)

f (x)

�00�2
b4 +

1

nb1=2
f (x)

2
p
�
p
x
;

MSE
n
~fJLN;NM (x)

o
�

�
�f (x) x

4

�
x

4

f 00 (x)

f (x)

�00�2
b4 +

1

nb1=2
f (x)p
2�
p
x

=
1

16

�
�f (x) x

2

�
x

2

f 00 (x)

f (x)

�00�2
b4 +

p
2

nb1=2
f (x)

2
p
�
p
x
:

The smoothing parameter values that minimize these approximations are

b�JLN;MG =
1

22=3

�
f (x)

2
p
�
p
x

��
f (x)

x

2

�
x

2

f 00 (x)

f (x)

�00��4=9
n�2=9;

b�JLN;NM = 21=3
�
f (x)

2
p
�
p
x

��
f (x)

x

2

�
x

2

f 00 (x)

f (x)

�00��4=9
n�2=9:

Observe that the relation b�JLN;NM = 2b�JLN;MG holds once again. Moreover, when

best implemented, the optimal-MSEs of two estimators for interior x are �rst-order

6Because the third-order term in Bias
n
f̂W (x)

o
is O

�
b2
�
, it would be possible in principle to

improve the bias convergence of this estimator from O (b) to O
�
b2
�
by employing one of the bias

correction techniques twice. However, it is doubtful whether there is much gain in practice from
the bias correction via iteration, and thus we do not consider such inferior cases any further.
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asymptotically equivalent, i.e.

MSE�
n
~fJLN;MG (x)

o
� MSE�

n
~fJLN;NM (x)

o
� 9

28=3

�
f (x)

x

2

�
x

2

f 00 (x)

f (x)

�00�2=9�
f (x)

2
p
�
p
x

�8=9
n�8=9:

3.2 Bias and Variance Approximations of GG Density Es-
timators Using Weakly Dependent Observations

The second property is concerned with estimating the marginal density from nonneg-

ative time-series data. Examples include estimation of the distribution of important

�nancial variables such as short-term interest rates or trading volumes, and even the

baseline hazard in �nancial duration analysis.

To allow for weakly dependent observations in GG density estimation, we replace

Assumptions 1 and 2 with the regularity conditions below. While similar conditions

can be found, for instance, in Bouezmarni and Rombouts (2010), they assume strong

mixing processes with an exponentially decaying mixing coe¢ cient and exclusively

study the MG kernel.7 We relax the mixing condition and prove that their result

holds for a broader class of asymmetric kernels which includes the MG kernel.

Assumption 1b. fXig is a nonnegative, strictly stationary and strong mixing pro-

cess with the mixing coe¢ cient � (`) of size � (2r � 2) = (r � 2) for some r > 2.

Assumption 2b. Let f (�) and fj (�; �) be the marginal and joint densities of Xi and

(Xi; Xi+j), respectively. Then, f is twice continuously di¤erentiable, and fj is

uniformly bounded.

7Carrasco and Chen (2002) provide the conditions that make GARCH processes stationary and
�-mixing with exponential decay, whereas Chen, Hansen and Carrasco (2010) discuss the conditions
that can establish �-mixing with exponential decay in scalar di¤usion processes. In relation to the
latter, Feller�s square-root process and its inverse, which have been employed as models of short-
term interest rates by Cox, Ingersoll and Ross (1985) and Ahn and Gao (1999), respectively, are
examples of exponentially decaying �-mixing processes. Since �-mixing implies strong mixing, their
assumption can cover many important applications in economics and �nance.
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The next theorem states that results in Theorem 1 are carried through even when

positive weakly dependent observations are used.

Theorem 4. Results in Theorem 1 still hold under Assumptions 1b, 2b and 3.

3.3 Convergence Properties of the GG Density Estimator for
the Density Unbounded at the Origin

As the third property we obtain convergence results of f̂GG (x) when the true density

f (x) is unbounded at x = 0. Often a clustering of observations near the boundary

can be found in intraday trading volumes or realized volatilities, for instance. In

this case, it is highly likely that the true density has a pole at x = 0 (e.g. Malec

and Schienle, 2014). Such shapes also appear in many other applications including

spectral densities of long memory processes. The following two theorems demonstrate

weak consistency and the relative convergence of f̂GG (x) as x! 0, provided that the

assumption on the smoothing parameter is replaced by Assumption 3c.

Assumption 3c. The smoothing parameter b satis�es b+ (nb2)�1 ! 0 as n!1.

Theorem 5. If the true density f (x) is unbounded at x = 0 and Assumptions 1b

and 3c hold, then f̂GG (0)
p!1.

Theorem 6. Suppose that the true density f (x) is unbounded at x = 0 and con-

tinuously di¤erentiable in the neighborhood of the origin. If Assumption 1b and 3c

also hold, then ����� f̂GG (x)� f (x)f (x)

����� p! 0

as x! 0.

FIGURE 2 ABOUT HERE
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Bouezmarni and Scaillet (2005, p.399) focus exclusively on random samples and

�nd that the property in Theorem 5 is peculiar to the G and MG kernels and not

shared with other asymmetric kernels such as the Inverse Gaussian and Reciprocal

Inverse Gaussian kernels by Scaillet (2004). To illustrate the result from this theorem,

we prepare Figure 2, in which the W, NM, MG, and G density estimates based on 500

independent observations drawn from G(0:75; 1:25) are plotted. The �gure indicates

that estimates using three examples of the GG kernels, as well as the G estimate, can

indeed capture the shape of the density near the boundary reasonably well.

4 Finite Sample Performance

4.1 Setup

This simulation study examines accuracy of GG density estimators. We compare

�nite sample performance of three GG estimators using the W, NM and MG kernels

with that of three other density estimators, namely, (i) the density estimator using yet

another asymmetric kernel, (ii) the one obtained via back-transforming a symmetric

kernel density estimate based on the log-transformed data, and (iii) a symmetric

kernel density estimator in the original scale with a proper boundary correction.

For (i), because of its popularity in empirical studies, the G kernel is chosen as the

asymmetric kernel that does not belong to the GG kernels. For (ii) and (iii), the

log-transformed (�LT�) density estimator using the Gaussian kernel and the local

linear (�LL�) density estimator using the Epanechnikov kernel (e.g. Jones, 1993) are

chosen, respectively.

For each distribution in the list below, 1; 000 data sets of sample size n = 100,

200 or 500 are simulated. All density estimates are evaluated on an equally spaced

grid of 500 points over the interval [0; 5]. Following Chen (2000) and Scaillet (2004),
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as the performance measure for each estimator �f , we compute the root integrated

squared error (�RISE�) RISE
�
�f (x)

	
=
qR1

0

�
�f (x)� f (x)

	2
dx. In our report,

the integral is approximated over the 500 points. The smoothing parameter b (for

W, NM, MG, and G) or the bandwidth h (for LT and LL) is chosen as the minimizer

of the (approximated) RISE, again as in Chen (2000) and Scaillet (2004). Lastly, six

distributions below are considered as truths, because of their popularity in parametric

modelling of income distributions, actuarial loss distributions and baseline hazards.

Distribution 5, proposed by Buch-Larsen et al. (2005) for modelling distributions of

insurance payments and operational risks, is known to have a Pareto-type tail. This

distribution is adopted in this simulation study, from the viewpoint that it is thought

to mimic the shape of income distributions well. Distribution 6, which is unbounded

at the origin, is prepared to investigate the property stated in Theorem 5. Figure 3

presents the shapes of these densities.

1. Gamma: f (x) = x��1 exp (�x=�)1 fx � 0g = f��� (�)g ;
(�; �) = (1:5; 1) :

2. Weibull: f (x) = (�=�) (x=�)��1 exp f� (x=�)�g1 fx � 0g ;
(�; �) = (1:5; 1:5) :

3. Half-Normal: f (x) =
�
2=
�p
2��

�	
exp

�
� (x� �)2 = (2�2)

	
1 fx � 0g ;

(�; �) = (0; 1:5) :

4. Log-Normal: f (x) =
�
1=
�
x
p
2��

�	
exp

�
� (log x� �)2 = (2�2)

	
1 fx � 0g ;

(�; �) = (0; 0:75) :

5. Generalized f (x) = � (x+ c)��1 f(M + c)� � c�g1 fx � 0g
Champernowne: �f(x+ c)� + (M + c)� � 2c�g�2 ;

(�;M; c) = (2:5; 0:5; 0:25) :

6. Gamma with Pole: f (x) = x��1 exp (�x=�)1 fx � 0g = f��� (�)g ;
(�; �) = (0:75; 1:25) :

FIGURE 3 AND TABLE 1 ABOUT HERE
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4.2 Simulation Results

Table 1 presents averages and standard deviations of RISEs and averages of tuning

parameter values (i.e. smoothing parameter values for W, NM, MG, and G, and

bandwidth lengths for LT and LL) over 1; 000 Monte Carlo replications. For each

distribution, results are qualitatively similar across three sample sizes. A quick in-

spection reveals that overall the MG estimator performs better than the G estimator;

only exceptions can be found in Distribution 1 for n = 100 and Distribution 6 for all

sample sizes. This is congruous with the results in Chen (2000) and Scaillet (2004).

Each of �rst three distributions is chosen so that one of the GG estimators can

have clear advantage. As expected, W and MG, as well as G, perform well for

Distributions 1 and 2, whereas NM dominates for Distribution 3. Poor performance

of W, MG and G for Distribution 3 could be attributed to their di¢ culty in capturing

the shape of the pdf near the origin. The pdf is decreasing and satis�es the shoulder

condition f 0 (0) = 0. Accordingly, the data suggest concavity of the density in the

vicinity of the origin. As a consequence, these kernels tend to misinterpret the local

concavity as an indication of a mode over the strictly positive region. We can also

�nd that LL exhibits comparable performance to the GG estimators, whereas LT is

consistently outperformed.

The GG estimators perform satisfactorily even for Distribution 4, which is ad-

vantageous to LT, or for Distribution 5, which could be unfavorable to all due to its

Pareto-type tail. As predicted by Theorem 5, the GG estimators also exhibit reas-

onably good performance for Distribution 6. In contrast, LL and LT are dominated

for Distributions 4 and 6 and Distribution 5, respectively.

A rationale as to why the LT estimator f̂LT (x) does not necessarily perform

well (although it is popularly applied in empirical works) may be found in its bias
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property. Following Wand, Marron and Ruppert (1991), we can approximate the bias

and variance of the estimator as

Bias
n
f̂LT (x)

o
� 1

2

�
f (x) + 3xf 0 (x) + x2f 00 (x)

	
h2;

V ar
n
f̂LT (x)

o
�

�
(nh)�1 f (x) = (2

p
�x) if x=h!1

(nh2)
�1
f (x) = (2

p
��) if x=h! � > 0

:

While f̂LT (x) shares the shrinking variance property as the design point moves away

from the boundary (which comes from the fact that the variance coe¢ cient is pro-

portional to f (x) =x) with asymmetric kernel estimators, its leading bias takes a less

favorable form in that it contains three terms involving the true density and its �rst

two derivatives.

We also make a few remarks on tuning parameters b and h. First, both hLT and

hLL appear to be systematically long. Large values of the former may be attributed

to the fact that log-transformed observations tend to spread out toward the large

(in magnitude) negative side for each distribution. Second, for each combination

of the sample size and distribution (except Distribution 6), we can �nd a consistent

ordering of bG, bMG, bW , and bNM from the smallest to the largest. Third, whether

bNM becomes roughly twice the size of bMG as predicted in Section 2.3.2 depends

crucially on distributions and sample sizes. The derivation of (7) (and thus (8)) is

built on the trimming argument for the boundary region. Therefore, whether �nite

sample results support the relation relies on how fast the shrinkage of b is and/or how

small the weight that the distribution puts near the boundary is. While it is hard to

�nd the relation bNM � 2bMG in Table 1, in unreported simulations where the truth

is GG (5; 2; 2:5) (that puts a very small weight over the boundary region), we obtain

(bNM ; bMG) = (0:0884; 0:0452) ; (0:0658; 0:0334) ; (0:0460; 0:0232) for n = 100; 200; 500

so that the relation is con�rmed for each sample size.
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5 Conclusion

Unlike symmetric kernels, exploring asymptotics on asymmetric kernels has relied

on kernel-speci�c, diversi�ed approaches. To pursue a uni�ed approach in their

asymptotics, this paper has proposed a new class of asymmetric kernels that is built

on the GG pdf and a few common conditions and thus referred to as a family of

the GG kernels. The family can generate asymmetric kernels that share appealing

properties with the MG kernel. Asymptotics on kernels belonging to the family can

be delivered by manipulating the conditions directly, as with symmetric kernels. As

special cases, the family encompasses theW and NM kernels, as well as the MG kernel.

This paper also demonstrates three additional properties of the GG density estimator

including applicability of MBC and weak consistency for the density unbounded at

the origin. Monte Carlo simulations indicate good �nite sample properties of GG

density estimators.

There are two possible research extensions. First, choice methods of the smooth-

ing parameter b in GG density estimation need to be further investigated. Promising

candidates include a more sophisticated plug-in method like the solve-the-equation

plug-in method by Sheather and Jones (1991) and the cross-validation method. In

particular, to the best of our knowledge, no equivalent method to the former has

ever been proposed for asymmetric kernel density estimation. Second, goodness-

of-�t tests can be built on the GG kernels. Fernandes and Grammig (2005) and

Fernandes, Mendes and Scaillet (2011) obtain favorable �nite-sample results from

applying the G kernel to speci�cation testing for duration models and testing for

symmetry, respectively. Combining the GG kernels with these testing procedures

appear to be another good application of the kernels. These extensions are currently

under authors�investigation and will be addressed in separate papers.

25



A Appendix

In order to approximate the gamma function, we frequently refer to the following

well-known formulae:

Stirling�s formula (�SF�).

� (z + 1) =
p
2�zz+1=2e�z

�
1 +

1

12z
+

1

288z2
+O

�
z�3
��

as z !1:

Series expansion of the log gamma function (�SELG�).

log � (1 + z) = �
z +
1X
k=2

(�1)k � (k)
k

zk for jzj < 1;

where (only in this context) 
 = limn!1 (
Pn

k=1 k
�1 � log n) = 0:5772156649 : : :

is Euler�s constant, and � (k) =
P1

n=1 n
�k (k > 1) is the Riemann zeta function.

Legendre duplication formula (�LDF�).

� (z) �

�
z +

1

2

�
=

p
�

22z�1
� (2z) for z > 0:

A.1 Proof of Theorem 1

Bias. Let �x
d
= GG (�; �� (�=
) =� f(�+ 1) =
g ; 
). Then, a second-order Taylor

expansion ofE
n
f̂GG (x)

o
around �x = x yieldsE

n
f̂GG (x)

o
= f (x)+E (�x � x) f 0 (x)+

(1=2)E (�x � x)2 f 00 (x) + o
�
E (�x � x)2

	
. It follows from (2) that

E (�mx ) = �
mf� (�=
)g

m�1 � f(�+m) =
g
[� f(�+ 1) =
g]m :

In particular, E (�x) = � (by construction) and

E
�
�2x
�
= �2

� (�=
) � f(�+ 2) =
g
[� f(�+ 1) =
g]2

= �2Mb (x) :

Using Conditions 1 and 3, we have, for x � C1b, E (�x) = x and E
�
�2x
�
= x2 +

C5xb + o (b), and thus E (�x � x) = 0 and E (�x � x)2 � C5xb. As a consequence,
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Bias
n
f̂GG (x)

o
� (C5=2)xf

00 (x) b. On the other hand, for x 2 [0; C1b), E (�x) =

'b (x) = O (b) and x = O (b) hold, and thus E (�x � x) = [f'b (x)� xg =b] b :=

�b (x) b, where �b (x) = O (1). Moreover, it follows from E
�
�2x
�
= O (b2) that

E (�x � x)2 = O (b2). Therefore, Bias
n
f̂GG (x)

o
� �b (x) f 0 (x) b.

Variance. As usual, we consider the approximation V ar
n
f̂GG (x)

o
= (1=n) fE (K2

i ) +O (1)g.

A straightforward calculation yields, for � 2 R+,

K�
GG (u;x; b) =

264
8<:
�

�
�+1



�
�

9=;
��1

�
n
�(��1)+1




o
�
�(��1)+1




n
�
�
�



�o2��1
375

�

uf�(��1)+1g�1 exp

�
�
�

u

��(�
 )=(�1=
�(
�+1

 ))

�
�
h
��
�
�



�
=
n
�1=
�

�
�+1



�oi�(��1)+1
�
n
�(��1)+1




o1 fu � 0g
= Ab;� (x) �

8<:pdf of GG
0@� (�� 1) + 1; ��

�
�



�
�1=
�

�
�+1



� ; 

1A9=; :

Hence, V ar
n
f̂GG (x)

o
� (1=n)Ab;2 (x)E ff (&x)g, where

&x
d
= GG

�
2�� 1; �� (�=
)

21=
� f(�+ 1) =
g ; 

�
:

By the mean-value theorem, E ff (&x)g = f (x)+E (&x � x) f 0 (�&x) for some �&x joining

&x and x. It follows from (2) that

E (&x) = �

�
� (�=
) � (2�=
)

21=
� f(�+ 1) =
g� f(2�� 1) =
g

�
= �Hb (x) :

Then, Condition 4, together with Condition 1, implies that E (&x � x) = o (1) so that

E ff (&x)g � f (x) regardless of the position of x. Finally, Condition 5 establishes

the approximation to the variance. �
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A.2 Proof of Theorem 2

A.2.1 The MG Kernel

Condition 3. Observe that Mb (x) = 1+ 1=�. For x � 2b, Mb (x) = 1+ (1=x) b so

that C5;MG = 1. On the other hand, for x 2 [0; 2b), � = (x=b)2 =4 + 1 = O (1), and

thus Mb (x) = O (1) holds.

Condition 4. Substituting � = x=b into Hb (x) = 1 � (2�)�1 yields Hb (x) =

1 + O (b) = 1 + o (1) for interior x. On the other hand, for boundary x, � = O (1)

regardless of whether � = x=b (when x = O (b) and x � 2b) or � = (x=b)2 =4 + 1

(when x = O (b) and x 2 [0; 2b)). It follows that Hb (x) = O (1).

Condition 5. Because �=� = b regardless of the position of x, we have

Ab;� (x) = b
1�� � f� (�� 1) + 1g
��(��1)+1 f� (�)g� :

For interior x, SF yields, as � = x=b!1, � (�) �
p
2����1=2e�� and � f� (�� 1) + 1g �

p
2� f� (�� 1)g�(��1)+1=2 e��(��1). Then,

Ab;� (x) �
b1�� (�� 1)(1��)=2

�1=2
�p
2�
���1 :

The result immediately follows from de�ning VI;MG (�) :=
n
�1=2

�p
2�
���1o�1

and

recognizing that (�� 1)(1��)=2 = �(1��)=2 (1� 1=�)(1��)=2 � (x=b)(1��)=2. For bound-

ary x, the result is established by de�ning

VB;MG (�) :=

8<:
�f�(��1)+1g

��(��1)+1f�(�)g� if x=b! � � 2
�( �4�2+1)

�
�
4 �

2+1
n
�
�
�2

4
+1
�o� if x=b! � 2 (0; 2) :

A.2.2 The W Kernel

Condition 3. Observe that Mb (x) = � (1 + 2=�) = f� (1 + 1=�)g2. For x � 2b, we

may pick an arbitrarily small b > 0 so that j2=�j =
���p2b=x��� � 1. Then, by SELG
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and � (2) = �2=6, two gamma functions admit the following approximations:

�

�
1 +

2

�

�
= exp

�
log �

�
1 +

2

�

��
= 1� 2


�
+
(�2=3) + 2
2

�2
+O

�
��3

�
;

�

�
1 +

1

�

�
= exp

�
log �

�
1 +

1

�

��
= 1� 


�
+
(�2=12) + (
2=2)

�2
+O

�
��3

�
:

Applying a geometric series expansion to the approximation to f� (1 + 1=�)g�2 �nally

delivers Mb (x) � 1 + (�2=6) =�2 = 1 + f�2= (12x)g b so that C5;W = �2=12. On the

other hand, for x 2 [0; 2b), � = (x=b) =2 + 1 = O (1), and thus Mb (x) = O (1) is the

case.

Condition 4. In this case, Hb (x) =
�
21=� (1� 1=�) � (1 + 1=�) � (1� 1=�)

	�1
. It

is easy to see that Hb (x) = O (1) for boundary x. On the other hand, for interior

x, 21=� = exp f(1=�) log 2g = 1 + O
�
b1=2

�
, and (1� 1=�) � (1 + 1=�) � (1� 1=�) =

1 +O
�
b1=2

�
by SELG. Therefore, Hb (x) = 1 +O

�
b1=2

�
= 1 + o (1) holds.

Condition 5. We have

Ab;� (x) =

�
�

�

���1 �� �1 + 1
�

�	��1
�
�
� + 1��

�

�
��+

1��
�

:

For interior x, because � =
p
2x=b ! 1, we may approximate � (1 + 1=�) � 1,

� f� + (1� �) =�g � � (�) and ��+(1��)=� � �� . In addition, (�=�)��1 = 2(��1)=2 (xb)(1��)=2,

and thus

Ab;� (x) � 2
��1
2
� (�)

��
(xb)

1��
2 := VI;W (�) (xb)

1��
2 :

For boundary x, the result is established by de�ning

VB;W (�) :=

8>><>>:
�
2
�

� ��1
2

n
�
�
1+ 1p

2�

�o��1
�
�
�+ 1��p

2�

�
�
�+ 1��p

2�

if x=b! � � 2n
2(�+2)
�2+4

o��1 f�(1+ 2
�+2)g

��1
�f�+ 2(1��)

�+2 g
�
�+

2(1��)
�+2

if x=b! � 2 (0; 2)
:
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A.2.3 The NM Kernel

Condition 3. Observe that Mb (x) = (�=2) [� (�=2) =� f(�+ 1) =2g]2. For x � 2b,

it follows from LDF that Mb (x) = (�=2)
�
2��1 f� (�=2)g2 = f

p
�� (�)g

�2
. Next, SF

implies that, as � = x=b!1,

� (�) =
p
2����1=2e��

�
1 +

1

12�
+O

�
��2

��
; (A1)

�
��
2

�
=

p
2�
��
2

��=2�1=2
e��=2

�
1 +

1

6�
+O

�
��2

��
: (A2)

Then, we �nd that the approximation of Mb (x) takes a very simple form Mb (x) =

1+ (2�)�1+O (��2) = 1+ (2x)�1 b+ o (b) so that C5;NM = 1=2. On the other hand,

for x 2 [0; 2b), � = (x=b)2 =4 + 1 = O (1), and thus Mb (x) = O (1) holds.

Condition 4. Hb (x) = (�� 1=2) � (�=2) � (�) =
�
21=2� f(�+ 1) =2g� (�+ 1=2)

�
is

O (1) for boundary x because of the same reason as in the proof for the MG kernel.

For interior x, using LDF and then � (2�) �
p
2� (2�)2��1=2 e�2� as � = x=b ! 1,

as well as (A1) and (A2), yields

Hb (x) =
�� 1

2

21=2
23��2

�

�
�
�
�
2

�	2
� (�)

� (2�)
� 1� 1

2�
= 1 +O (b) = 1 + o (1) :

Condition 5. We have

Ab;� (x) = �
1�� 2��1

�
�(��1)

2
+ 1
2

�
�
�
�+1
2

�	��1
�
n
�(��1)
2

+ 1
2

o
�
�
�
�
2

�	2��1 :

For interior x, by LDF, Ab;� (x) reduces to

Ab;� (x) = �
1�� 2��1

�
�(��1)

2
+ 1
2

(
p
�)
� f� (�)g��1 � f� (�� 1)g

2(��1)(��1)+�(��1)�1�
n
�(��1)
2

o�
�
�
�
2

�	3��2 :
Next, by SF, as � = x=b ! 1, � f� (�� 1)g �

p
2� f� (�� 1)g�(��1)�1=2 e��(��1)

and � f� (�� 1) =2g �
p
2� f� (�� 1) =2g�(��1)�1=2 e��(��1)=2. Substituting these
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approximations, as well as (A1) and (A2), we �nally deduce that

Ab;� (x) � �1���
��1
2

e�=2

�1=2 (
p
�)
��1

�
1� 1

�

� �(��1)
2

:

Moreover �1���(1��)=2 = (xb)(1��)=2 and (1� 1=�)�(��1)=2 � e��=2, and thus

Ab;� (x) �
1

�1=2 (
p
�)
��1 (xb)

1��
2 := VI;NM (�) (xb)

1��
2 :

For boundary x, the result is established by de�ning

VB;NM (�) :=

8>>><>>>:
�
2
�

���1 f�(�+12 )g��1�f �(��1)+12 g
�
�(��1)+1

2 f�(�2 )g
2��1 if x=b! � � 2

�
8

�2+4

���1 n���28 +1�o��1�( �8�2+ 1
2)

�
�
8 �

2+1
2

n
�
�
�2

8
+ 1
2

�o2��1 if x=b! � 2 (0; 2)
: �
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Figure 1: Shapes of the GG Kernels When b = 0:2

(a) x = 0

(c) x = 2

(b) x = 1

(d) x = 4

Figure 2: GG Density Estimates When the True Distribution Is G (0:75; 1:25)

Figure 3: Shapes of True Densities for Monte Carlo Simulations
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Table 1: Averages of Performance Measures and Tuning Parameter Values

b  or h b  or h b  or h

GG W 0.0356 (0.0098) 0.2778 0.0294 (0.0081) 0.1701 0.0221 (0.0057) 0.0897
NM 0.0368 (0.0091) 0.3007 0.0306 (0.0076) 0.1861 0.0232 (0.0055) 0.0975
MG 0.0362 (0.0112) 0.1712 0.0289 (0.0088) 0.1105 0.0211 (0.0059) 0.0683

Non­GG G 0.0358 (0.0125) 0.1404 0.0290 (0.0098) 0.0962 0.0220 (0.0066) 0.0601
LT 0.0441 (0.0157) 0.4434 0.0348 (0.0114) 0.3820 0.0252 (0.0074) 0.3149
LL 0.0368 (0.0116) 1.0272 0.0302 (0.0088) 0.7524 0.0234 (0.0061) 0.5152

GG W 0.0374 (0.0119) 0.1870 0.0297 (0.0090) 0.1228 0.0214 (0.0058) 0.0809
NM 0.0385 (0.0116) 0.2090 0.0307 (0.0088) 0.1382 0.0222 (0.0058) 0.0911
MG 0.0367 (0.0127) 0.1272 0.0286 (0.0092) 0.0915 0.0204 (0.0060) 0.0634

Non­GG G 0.0368 (0.0140) 0.1137 0.0294 (0.0103) 0.0813 0.0218 (0.0069) 0.0526
LT 0.0470 (0.0154) 0.3730 0.0368 (0.0110) 0.3187 0.0267 (0.0073) 0.2584
LL 0.0367 (0.0127) 0.8234 0.0294 (0.0092) 0.6600 0.0217 (0.0060) 0.5098

GG W 0.0274 (0.0113) 0.3445 0.0225 (0.0083) 0.2745 0.0172 (0.0056) 0.1936
NM 0.0251 (0.0120) 0.3809 0.0207 (0.0088) 0.3152 0.0158 (0.0059) 0.2354
MG 0.0303 (0.0117) 0.2662 0.0245 (0.0087) 0.2039 0.0184 (0.0060) 0.1380

Non­GG G 0.0327 (0.0112) 0.1750 0.0262 (0.0087) 0.1325 0.0193 (0.0057) 0.0911
LT 0.0586 (0.0191) 0.4735 0.0457 (0.0140) 0.3997 0.0329 (0.0085) 0.3224
LL 0.0256 (0.0119) 1.4774 0.0203 (0.0094) 1.2598 0.0147 (0.0064) 1.0193

GG W 0.0429 (0.0153) 0.0830 0.0332 (0.0110) 0.0654 0.0242 (0.0080) 0.0471
NM 0.0447 (0.0152) 0.0932 0.0343 (0.0108) 0.0749 0.0245 (0.0078) 0.0562
MG 0.0416 (0.0158) 0.0624 0.0324 (0.0114) 0.0480 0.0238 (0.0081) 0.0334

Non­GG G 0.0458 (0.0150) 0.0535 0.0360 (0.0108) 0.0390 0.0263 (0.0075) 0.0261
LT 0.0401 (0.0166) 0.3207 0.0315 (0.0122) 0.2782 0.0232 (0.0082) 0.2310
LL 0.0482 (0.0147) 0.4415 0.0381 (0.0106) 0.3683 0.0282 (0.0073) 0.2937

GG W 0.0477 (0.0169) 0.1324 0.0391 (0.0126) 0.0922 0.0295 (0.0101) 0.0547
NM 0.0477 (0.0161) 0.1448 0.0390 (0.0122) 0.1033 0.0294 (0.0099) 0.0637
MG 0.0504 (0.0190) 0.0881 0.0403 (0.0141) 0.0618 0.0298 (0.0106) 0.0388

Non­GG G 0.0504 (0.0195) 0.0676 0.0403 (0.0151) 0.0485 0.0301 (0.0107) 0.0318
LT 0.0700 (0.0246) 0.4451 0.0544 (0.0177) 0.3807 0.0394 (0.0117) 0.3118
LL 0.0513 (0.0183) 0.4850 0.0413 (0.0137) 0.3618 0.0308 (0.0101) 0.2637

GG W 0.0617 (0.0181) 0.0858 0.0494 (0.0136) 0.0591 0.0359 (0.0091) 0.0380
NM 0.0652 (0.0168) 0.0855 0.0523 (0.0128) 0.0586 0.0380 (0.0088) 0.0373
MG 0.0627 (0.0171) 0.0803 0.0500 (0.0131) 0.0554 0.0368 (0.0098) 0.0357

Non­GG G 0.0614 (0.0202) 0.0571 0.0494 (0.0157) 0.0389 0.0363 (0.0107) 0.0242
LT 0.0639 (0.0304) 0.7389 0.0498 (0.0213) 0.6298 0.0361 (0.0140) 0.5138
LL 0.0650 (0.0161) 0.5280 0.0549 (0.0125) 0.3905 0.0438 (0.0099) 0.2552

1. Gamma

RISE RISE RISE

5. Generalized Champernowne

6. Gamma with Pole

n = 500n = 100 n = 200

2. Weibull

3. Half­Normal

4. Log­Normal

Note: Numbers in parentheses are simulation standard deviations of RISEs. �b or
h�denotes simulation averages of the values of smoothing parameters b for W, NM,
MG, and G, or the lengths of bandwidths h for LT and LL.
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