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Abstract

I identify level and slope factors in corporate bond returns. I show that these two factors

can explain 93% of the variation in average excess returns on corporate bonds. To show this

result, I describe expected excess returns and risks as functions of characteristics of corporate

bonds such as bond spreads and use a parametric characteristic-based asset pricing test. This

approach allows one to test the model’s ability to explain the variation in average excess returns

associated with multiple characteristics. The two factor model does well for all characteristics

except equity momentum.
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1 Introduction

I study empirically the behavior of the corporate bond premia and corporate bond spreads using

the historical data of corporate bond prices since 1973 in the US. The corporate bond premium

is defined as the expected return on corporate bonds in excess of synthetic treasury bonds with

an identical cash flow schedule. The corporate bond spread is defined as the relative price of a

corporate bond to its corresponding treasury bond, scaled by the time to maturity. I construct a

factor pricing model based on the bond spread to understand the variation of the corporate bond

premia observed in the data.

My asset pricing model consists of the first two principal components of the excess returns on

corporate bond portfolios sorted on bond spreads. The first principal component is a level factor,

on which all corporate bonds have the same loading. The second principal component is a slope

factor, which affects the bonds with high bond spread positively and the bonds with low bond

spread negatively. I show that this simple two factor model can account for the majority of the

variation in bond premia when bonds are sorted into portfolios based on 14 characteristics such as

bond spread, coupon yields and momentum.

The two factor model has a problem in pricing the corporate bond portfolios sorted on the

issuers’ past equity returns. That is, the equity momentum in the bond market identified by

Gebhardt, Hvidkjaer and Swaminathan (2005b) causes a problem for the two factor model.

I also show that these two factors explain more than 70% of the variation in realized excess

returns on portfolios sorted on other characteristics. This finding suggests that there is a strong

factor structure in corporate bond excess returns and shows that the empirical result of this article

can be interpreted as an application of the Arbitrage Pricing Theory of Ross (1976).

Next, I show a novel approach to conduct an asset pricing test which complements the classic

test result using portfolio sorts.

As pointed out by Cochrane (2011), the asset pricing test based on portfolio sorts amounts to

matching the expected excess return function (as a function of securities’characteristics) to the risk

function produced by the model. The classic test based on portfolio sorts implicitly assumes that

both expected excess returns and risk are functions of characteristics. I parametrically characterize

the expected excess return and risk functions of characteristics, using individual security data. This

approach yields a number of benefits for the test.

With the parametric characteristic-based asset pricing test, I can test the model using multiple

characteristics at once. With the classic test based on portfolio sorts, using multiple character-

istics is challenging due to the limited data amount. The parametric characteristic-based test is

particularly useful in analyzing my sample, where the sample size varies significantly over time.

With a few number of observations in the early 1970s, it is impossible to conduct multidimensional

sorts using my corporate bond data. With the parametric characteristic-based test, using four or
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five characteristics is fairly easy and can be done without losing precision in the estimated bond

premia.

To implement the test, I use a three-step procedure based on pooled OLS regressions using

individual bond-level observations. In the first and second steps, I estimate the expected excess

return function and the risk function parametrically using a large panel of individual security

returns. That is, I forecast returns and comovements with the characteristics of the bonds, such

as bond spread and time to maturity. I deliberately remove the ‘name’of the security from the

regressor of the forecasting regression. By conditioning on characteristics and not on the name

of the security, I can estimate the expected excess returns and expected comovements precisely.

This result shows that the corporate bond premia and the risks associated with corporate bonds

are more stable functions of the bond characteristics than the security name.

In the third step, I project the estimated expected excess returns onto the estimated risk by

minimizing the sum of squared pricing errors. These pricing errors are small if the expected excess

return function is close to a linear combination of the risk functions. That is, if the estimated bond

premia is matched well by a linear combination of the estimated risks produced by the model, the

model is successful in pricing these test assets.

Using the parametric characteristic-based asset pricing test, I show that the two factor model

explains 93% of the variation in estimated bond premia even when the four characteristics that

best predict excess returns are used as instruments.

From a methodological perspective, the parametric characteristic-based test is attractive for a

number of reasons. In addition to the capability of handling multiple characteristics in the test,

using individual securities gives rise to a large variation in estimated bond premia and risks. A

large variation in estimated risks leads to more effi cient estimates of the model parameters than

classic portfolio sorts. Furthermore, the parametric characteristic-based test offers the flexibility

of testing both time-varying bond premia as well as cross-sectional variation in bond premia.

Corporate bond premia can arise due to an exposure to systematic risk, transaction costs or

mispricing in bonds with some characteristics. The transaction cost to trade corporate bonds can

be large. Since corporate bonds are traded in the Over-the-counter (OTC) market, an investor

may have to search for a trading counterparty. As she anticipates costly search when selling the

bond in the future, the price today may reflect a discount1. My empirical result does not identify

which one of these three sources is the main reason for the bond premia. The fact that 93% of the

variation in bond premia can be explained by the exposure to the systematic risk only shows that

risk-based explanation is a plausible explanation of corporate bond premia.

The rest of the article proceeds as follows: In section 2, I discuss the related literature. In

1Acharya and Pedersen (2005) show that the existence of liquidity can lead to liquidity risk, which may then show
up as a systematic risk. My factor model may be a proxy for liquidity risk and I do not separate liquidity risk from
credit risk. Rather, with the two factor model I separate the risk premia (the sum of credit and liquidity risk premia)
and the liquidity (transaction cost) itself.
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section 3, I explain the data to be used for the empirical analysis. I conduct the asset pricing test

of the two factor model based on classic portfolio sorts in Section 4. I introduce the parametric

characteristic-based approach in Section 5 and show the test result. The last section provides

concluding comments.

2 Literature Review

There is a strand of literature which identifies and explains the risk premia priced in the corporate

bond market. Gebhardt, Hvidkajaer and Swaminathan (2005), the paper closest to mine, use a

two factor model of corporate bonds consisting of default (the long-term aggregate corporate bond

returns minus the long-term treasury bond returns) and term (the long-term treasury bond returns

minus T-bill rates) factors. They find that the two-factor model prices the cross-sectional variation

in expected excess returns of corporate bonds associated with duration and credit ratings. However,

the model fails to price the variation associated with yield to maturity.

The key difference in this article is that I adopt two factors consisting of the first two principal

components of the bond excess returns. I find that the second principal component, a slope factor,

is particularly important in explaining the variation in expected excess returns on corporate bonds.

With my two factor model, I can price the variation in corporate bond premia associated not only

with the three characteristics tested in Gebhardt, Hvidkajaer and Swaminathan (2005), but also

many others.

Another strand of literature identifies the risk premia priced in corporate bonds based on models.

By constructing either a reduced form model or a structural model which is consistent with the

observed credit spread and default probability, one can study the source and the magnitude of risk

premia. Papers based on a reduced form model includes Driessen (2005), while papers that use a

structural model include Leland (1994), Chen, Collin-Dufresne and Goldstein (2009) and Bharmra,

Kuehn and Strebulaev (2010), among others. The focus of these papers are limited to explaining

the variation in risk premia associated with time to maturity and credit ratings. In this article, I

explore a wider range of characteristics.

This article proposes a novel approach to conduct asset pricing tests based on characteris-

tics. The idea of explicitly expressing moments of the returns on securities using characteristics is

pioneered by Rosenberg (1974), who models the beta of stocks that depend on the stocks’charac-

teristics. The use of characteristics of securities in an asset pricing test is proposed by Cochrane

(2011) and partially implemented by Gao (2009). Cochrane (2011) points out that the traditional

asset pricing test based on portfolio sorts can be thought of as a characteristics-based test by

"An implicit assumption underlies everything we do: Expected returns, variances, and covari-

ances are stable functions of characteristics such as size and book-to-market ratio, and not security

names. This assumption is why we use portfolios in the first place."
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I formalize Cochrane (2011)’s idea and show that the parametric characteristic-based test can

be conducted using an instrumental variable regression. Gao (2009) estimates non-parametrically

the expected excess returns and covariance as a function of stocks’characteristics. However, Gao

(2009) applies a classic asset pricing test of Fama and MacBeth (1973), and tests if his measure of

covariance is priced in the cross-section of equities. In this article, I present a coherent framework

of both the measurement of moments, and the asset pricing test based on characteristics.

More recently, Connor, Hagmann and Linton (2012) propose an effi cient non-parametric asset

pricing test for their characteristic-based factor models. My approach is parametric and allows

risks to depend on multiple characteristics at once. Therefore my work is complimentary to Conner,

Hagmann and Linton (2012).

The parametric characteristics-based test presented in this paper allows both the expected

excess returns and risk measures to vary over time. The existing research approaches the time-

varying expected excess returns differently. Ferson and Harvey (1991) attempt to explain the

time-variation of expected excess returns for 10 size-sorted portfolios and industry portfolios using

standard 5-year rolling betas. The characteristics-based test I present in this article allows one

to measure the time-varying risk more precisely without limiting the focus to portfolios sorted in

a particular way. Other articles regarding asset pricing tests with time-varying expected excess

returns include Nagel and Singleton (2011), and Adrian, Crump and Moench (2011).

The parametric characteristic-based test uses individual securities for the test, not the portfolios.

Ang, Liu and Schwartz (2010) show that using individual stocks instead of portfolios helps reduce

the standard errors for the estimated factor weights of the stochastic discount factor. Gagliardini,

Ossola and Scaillet (2011) use individual panel data to test the three factor model of Fama and

French (1993). Avramov and Chordia (2006) also propose an asset pricing test using individual

securities, extending Fama and MacBeth (1973). All of these studies use the noisy estimates of

betas based on time-series regressions for each security. In contrast, I condition the measure of

risk on characteristics and reduce noises in the estimates significantly.

3 Data

I obtain the monthly price observation of senior unsecured corporate bonds from the following

four data sources. First, from 1973 to 1997, I use the Lehman Brothers Fixed Income Database

which provides month-end bid prices. Since Lehman Brothers used these prices to construct the

Lehman Brothers bond index while simultaneously trading it, the traders at Lehman Brothers had

an incentive to provide correct quotes. Thus although the prices in the Lehman Brothers Fixed

Income Database are quote-based, they are considered to be reliable.

In the Lehman Brothers Fixed Income Database, some observations are dealers’quotes while

others are matrix prices. Matrix prices are set using algorithms based on the quoted prices of
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other bonds with similar characteristics. Since matrix prices are less reliable than actual dealer

quotes (Warga and Welch (1993)), I remove them from the sample and treat the data points as

missing from the sample. The exception is December 1984, where all the prices are recorded as

matrix priced, and thus I retain these matrix prices only for this month.

Second, from 1994 to 2011, I use the Mergent FISD/NAIC Database. This database consists

of actual transaction prices reported by insurance companies.

Third, from 2002 to 2011, I use TRACE data which provides actual transaction prices. TRACE

covers more than 99 percent of the OTC activities in the US corporate bond markets after 2005.

The data from Mergent FISD/NAIC and TRACE are transaction-based data and therefore the

observations are not exactly at the end of months. Thus, I use only the observations that are in

the last five days of each month. If there are multiple observations in the last five days, I use the

latest one and treat it as a month-end observation.

Lastly, I use the DataStream database which provides month-end price quotes from 1990 to

2011.

Since there are some overlaps among the four databases, I prioritize in the following order: the

Lehman Brothers Fixed Income Database, TRACE, Mergent FISD/NAIC and DataStream. As

Jostova, Nikolova, Philipov and Stahel (2012) find, the number of the overlaps are not large relative

to the total size of the dataset, with the largest overlaps between TRACE and Mergent FISD being

3.3% of the non-overlapping observations. To check the data consistency, I compare the difference

across databases in Appendix A using the overlapping observations.

The Lehman Brother’s Fixed Income Database and Mergent FISD2 provide the other charac-

teristics specific to the issue of bonds, such as the maturity dates, credit ratings, coupon rates and

optionalities of the bonds. I remove bonds with floating rates and with any option features other

than callable bonds. Until the late 1980s, there are very few bonds that are non-callable. Thus,

removing callable bonds would reduce the length of the sample period significantly and it is for this

reason that I include callable bonds in my sample. As the callable bond price reflects the discount

due to the call option value, the yield on these bonds are not exactly comparable to the yield on

non-callable bonds. Crabbe (1991) estimates that call options contribute nine basis points to the

bond spread on average for investment grade bonds. Moreover, Crabbe and Helwege (1994) show

that speculative grade bonds typically have lower call option values than investment grade bonds.

Therefore, the effect of call options does not seem large enough to affect my results significantly3.

I apply several filters to remove the observations that are likely to be subject to erroneous

recording. First, I remove the pricing observations that are higher than matching treasury bond

2Mergent FISD provides relatively limited price information but provides bond characteristic information for most
of the bonds since 1994.

3As a recent example, Gilchrist and Zakrajsek (2010) also use the Lehman Brothers Fixed Income Database
including callable bonds in their analysis.
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prices (170,784 observations). Some corporate bond price observations seem to be unreasonably

high with a number even exceeding 1,000,000 per 100. By comparing the bond’s price with the

price of the synthetic treasury with the same repayment schedule (explained below), I determine

whether the corporate bond price is unrealistically high or not. On the other hand, several bonds

have extremely low price observations, including zeros. Zero prices are unrealistic as the bond is a

security with limited liability. Furthermore, unless the firm is in default, a price very close to zero

may not be reasonable, either. Thus, I drop the price observations below one cent per dollar, except

for bonds that are in default (4,794 observations)4. Some bonds have price observations after the

maturity date or before the issue date. I drop these observations as well (3,202 observations).

In addition, I remove the return (defined below) observations that show a large bounce back.

Specifically, I compute the product of the adjacent return observations and remove both observa-

tions if the product is less than −0.04. That is, if the same bond jumps up more than 20% in one

month and comes down more than 20% in the following month, I assume that the price observation

in the middle is recorded with errors. This filter removes 2,394 observations. Finally, I see some

bonds whose prices do not change for extended period (observed frequently in DataStream). As

these constant price observations are likely to be subject to lack of liquidity or data entry errors5, I

remove returns that are exactly zero for more than three consecutive months. This filter removes

162,827 observations.

For the information regarding defaults, I use Moody’s Default Risk Service which provides the

historical record of bond defaults from 1970. I compute the returns only up to the month in which

the default occurs. The same source also provides the secondary market value of the defaulted

bond one month after the incidence. If the price observation in the month when a bond defaults

is missing, I add Moody’s secondary market price to my dataset. I also add a price observation of

100 if the price at maturity is missing and the bond does not default nor is called.

After the filtering, I have an unbalanced panel of 1,454,363 bond-month price observations with

39,120 bonds over 468 months.

With the filtered price, I compute the return on corporate bond i by

Ri,t+1 =
(Pi,t+1 +AIi,t+1 + Couponi,t+1)− (Pi,t +AIi,t)

Pi,t +AIi,t

where Pi,t is the price for corporate bond i at time t, AIi,t is the accrued interest for bond i at time

t and Couponi,t is the coupon payment for bond i at time t.

To compute some of the characteristics of bonds, I use accounting information from Compustat.

The short-term debt ratio is computed by dividing the amount of short-term debt by the amount

4One might be concerned by the fact that the bond price falls before default and removing low prices then might
remove low returns before default, which is informative. The concern does not invalidate this filter as only 0.09% of
the price observations upon default is less than one cent.

5Chen, Lesmond and Wei (2007) find that zero return observations are highly related to illiquidity.
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of total debt outstanding. The tangibility ratio is computed by dividing the value of property,

plant and equipment by the value of total assets. I use CRSP for monthly stock price observations

and return volatilities.

To compute the corporate bond premia and the corporate bond spread, I need to construct

prices of the synthetic treasury bonds that match corporate bonds. To this end, I use the Federal

Reserve’s constant maturity yields data. First, I interpolate the treasury yield curve using cubic

splines and construct zero coupon curves for treasuries by bootstrapping. At each month and for

each corporate bond in the dataset, I construct the future cash flow schedule for the coupon and

principal payments. Then I multiply each cash flow with the zero coupon treasury bond price

with the corresponding time to maturity6. I add all the cash flows to obtain the synthetic treasury

bond price which matches the corporate bond. I do this process for all corporate bonds at each

month to obtain the panel data of matching treasury bond prices. I compute the returns on the

synthetic treasury Rfi,t+1 using the same definition as the corporate bonds.

To compare my result with the previous literature, I form a term factor termt based on the

difference in returns between long-term treasury bonds and one month t-bills. I also form a

default factor deft which is the difference in returns between long-term corporate bonds and long-

term treasury bonds. I obtain the data for these variables from Ibbotson’s Stocks, Bonds, Bills

and Inflation Yearbook.

Finally, I merge all four databases using the CUSIP identifiers at the firm and at the issue level.

In what follows I define the key variables that I use for the analysis. The bond premium is

defined by the expected returns on the corporate bond in excess of the matching treasury bond.

E
[
Rei,t+1

]
= E

[
Ri,t+1 −Rfi,t+1

]
Throughout this article, I use the word ‘excess returns’ on a corporate bond to mean Ri,t+1 −
Rfi,t+1. By focusing on the returns in excess of the matching treasury bond returns, I eliminate

the mechanical effect of shocks to the treasury yield curve on the corporate bond returns. Thus,

this definition of excess returns allows me to study the risk-return trade off that is unique in the

corporate bond market.

The bond spread is defined by the relative price scaled by time to maturity τ i,t

si,t =
1

τ i,t
log

P fi,t
Pi,t

6 I match the maturity of the zero coupon treasury prices to the cash flow exactly by linearly interpolating contin-
uous compounding forward rates.

8



Lastly, the default loss is defined by

lossi,t∗ = log
Pi,t∗

P fi,t∗

where t∗ is the time of default.

4 Cross-section of Corporate Bond Premia

4.1 Portfolios Sorted by Bond Spread

To understand the information contained in the variation of the individual bond spreads, I start

with a classic portfolio analysis of the cross-section of corporate bonds sorted on bond spreads.

At the end of July every year, I form ten portfolios based on the average bond spreads between

January and June. I record the monthly value-weighted average returns for each portfolio from

August to the following July. The one month gap between the time to form portfolios and the time

of the information used to sort bonds is necessary to remove high frequency market microstructure

noise which may induce spurious return forecastability. I also take six-month averages of the bond

spread to average out the potential measurement errors in bond prices.

A preliminary analysis shows that there is a distinct jump in the average excess returns between

the ninth and tenth portfolios. To see the information in the last decile better, I split the tenth

portfolio into three sub-portfolios based on bond spreads when rebalancing portfolios.

The top panel of Table 1 shows the average monthly portfolio returns in excess of matching

treasuries. The average excess returns on corporate bonds rise monotonically from -0.01% per

month7 to 0.64% per month as they move from the lowest decile to the last decile. The difference

in average excess returns between the highest and the lowest decile is 0.64% with t-statistics 3.2.

The excess returns on these portfolios are serially correlated, as shown in the lag k autocorrela-

tion coeffi cients ARk. The signs of the AR1 coeffi cients suggest that bonds with a high price (low

bond spread) tend to be followed by a bad return while bonds with a low price (high bond spread)

also tend to be followed by a bad return. Except for the seventh and eighth deciles and the last

subportfolio (10c), the AR1 coeffi cients are statistically significant at the 5% level. On the other

hand, the AR2 and AR3 coeffi cients (not reported) are all statistically insignificant.

There are two potential reasons why the autocorrelations are present in the data. First, it is

possible that high frequency measurement errors cause spurious mean reversion in prices. Second,

individual bond returns should be negatively autocorrelated if the variation in the bond spread is

associated with the news about expected excess returns, as opposed to the news about expected

7The negative average excess returns might be due to i) the interpolation in treasury yield curve, ii) Omission
of callablility of corporate bonds and iii) recording errors in the data. Since the negative average excess returns is
economically and statistically small, I will not impose further filters just to remove it.
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Table 1: Portfolios Sorted On Bond Spreads (Percentage Per Month)

Sample Statistics:

1(low) 2 3 4 5 6 7 8 9 10 10a 10b 10c 10-1

E(Re) -0.01 0.04 0.04 0.05 0.04 0.05 0.17 0.18 0.21 0.64 0.42 0.68 0.91 0.64

se[E(Re)] (0.08) (0.08) (0.07) (0.07) (0.08) (0.08) (0.09) (0.10) (0.13) (0.23) (0.19) (0.25) (0.31) (0.20)

AR1(R
e) -0.12∗ -0.14∗ -0.17∗ -0.14∗ -0.19∗ -0.14∗ -0.06 0.05 0.14∗ 0.26∗ 0.19∗ 0.29∗ 0.07

AR2(R
e) -0.04 -0.06 -0.05 -0.05 -0.05 -0.04 -0.06 -0.05 -0.03 0.01 -0.03 0.04 -0.03

E[s] 0.03 0.04 0.05 0.06 0.07 0.09 0.11 0.14 0.20 0.30 0.28 0.33 0.37

E[loss] 0.00 0.00 0.00 0.00 0.03 0.02 0.01 0.01 0.03 0.20 0.09 0.19 0.41

E[τ ] 14.94 14.44 13.48 12.67 12.01 11.60 11.23 10.20 8.94 9.58 8.31 7.63 11.86

E[MV ] 7.91 7.05 6.70 6.53 6.23 5.79 5.36 5.28 4.82 4.36 1.51 1.43 1.42

Issuer Information:

1(low) 2 3 4 5 6 7 8 9 10 10a 10b 10c 10-1

MVeq 22.71 14.06 10.70 7.63 6.32 4.56 3.80 2.56 1.22 1.16 0.93 0.66 1.74 -20.97

B/Meq 0.29 0.36 0.40 0.38 0.42 0.51 0.52 0.56 0.60 0.52 0.57 0.59 0.46 0.17

momeq 0.32 0.40 0.42 0.38 0.39 0.41 0.44 0.51 0.42 0.43 0.46 0.47 0.34 0.02

Time-series Regression: Rei,t = αi + β1,iLevelt + β2,iSlopet + εi,t

1(low) 2 3 4 5 6 7 8 9 10 10a 10b 10c 10-1

α -0.03 0.01 0.00 0.01 0.01 -0.01 0.03 0.01 -0.08 0.03 -0.08 0.05 0.17 0.05

se(a) (0.04) (0.02) (0.02) (0.03) (0.02) (0.04) (0.02) (0.03) (0.06) (0.03) (0.06) (0.10) (0.13) (0.03)

β1 0.27 0.30 0.30 0.29 0.31 0.33 0.33 0.31 0.31 0.39 0.34 0.41 0.45 0.12

se(β1) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.04) (0.01)

β2 -0.24 -0.25 -0.22 -0.19 -0.23 -0.17 -0.05 0.04 0.26 0.80 0.62 0.79 0.99 1.04

se(β2) (0.03) (0.02) (0.01) (0.01) (0.03) (0.02) (0.02) (0.02) (0.05) (0.02) (0.09) (0.07) (0.12) (0.03)

R2 0.79 0.89 0.94 0.91 0.89 0.84 0.88 0.85 0.77 0.96 0.67 0.80 0.63

GMM χ2 test: 10.82 [0.545]
At the end of July, the bonds are sorted into portfolios according to their average bond spreads between

January and June. The returns are recorded from August to next July, when portfolio rebalancing occurs.

The time period of the data is from 1973 to 2011. Level and Slope correspond the first two principal

components of excess returns. ARk (·) is the univariate autocorrelation coeffi cient with lag k and ∗ shows
that the coeffi cient is statistically significant at 5% level. s denotes the value-weighted average of the bond

spreads on the portfolios. loss is the value-weighted average default loss rate. τ is time to maturity andMV

is the total value of the portfolio in billion dollars. MVeq is the (bond) value-weighted market value of the

issuers’equities in million dollars. B/Meq is the value-weighted average of the issuers’book-to-market ratio.

momeq is the value-weighted average of the issuers’average equity returns from t − 12 to t − 2. Standard

errors (in parenthesis) are adjusted for the serial correlations up to 12 lags following Newey and West (1987).

The GMM χ2 test shows the test of the hypothesis that the intercepts of the regressions are jointly zero.

The p-value is shown in the bracket.
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default. If the bond price falls due to the news about discount rates, the return on the bond going

forward must be higher on average.

The second source of serial correlation in returns is analyzed using a term structure model in

Nozawa (2012). The lesson from this exercise is that the individual bond returns show negative

autocorrelations when the bond is held until maturity. Even so, the serial correlation is not too

persistent and accounting for 12 to 24 lags is enough to conduct statistical inference. As I analyze

portfolios of bonds where each individual bond can leave or join the portfolio in the middle of its

life, the serial correlation of portfolio returns must be attenuated relative to the model-implied

serial correlations in Nozawa (2012). Thus, in the following analysis, I account for 12 lags using

the weights of Newey and West (1987) when computing standard errors.

The average ex-post8 bond spread (per month) E [s] and the default loss rate E [loss] for the

portfolios rise almost monotonically from the lowest decile to the highest, with a sharp rise from

the ninth decile to the tenth decile. The bonds in the first four deciles never default in this sample.

The loss rate in the ninth decide is only 3 basis points per month while it rises to 20 basis points

for the highest decile. The fact that the first four deciles have positive spreads and yet have no

defaults at all does not imply that there is an arbitrage opportunity. An investor who buys a bond

in the first four deciles may still suffer from the news about the credit event, as such news can send

the bond into lower deciles with lower prices. A default may occur after the bond migrates to the

lower deciles, but the lower returns due to the news is recorded in the original low spread portfolio.

The bonds in the lowest spread decile have longer time to maturity on average (high E [τ ]) and

larger total market value (high E [MV ]). Also, an analysis on the equities on the issuers of these

bonds shows an interesting pattern. The issuers of the high spread bonds have small equity market

values. On the other hand, there is no significant variation in the issuers’book-to-market ratio9

B/Meq and the past average equity returns momeq. Though B/Meq rises from the first decile to

the tenth decile, the variation is not economically large. This result seems contrary to the idea

that the book-to-market ratio is the proxy for financial distress.

4.2 Two Factor Model

To examine if the variation in average excess returns across the bond spread sorted portfolios can

be explained by a risk exposure, I form a simple factor model consisting of the first two principal

components of excess returns on ten portfolios sorted on bond spread.

The third panel of Table 1 shows the loadings of the two principal components on the ten

portfolios. The first principal component is a level factor (Levelt) which has nearly the same

loadings on all ten portfolios, as shown in β1. Levelt explains 73% of the common variation in

8The ex-post bond spread is the spread observed after the portfolio formation, which can be different from the
bond spread used to form the portfolios.

9Though the high spread portfolios tend to have slightly higher book-to-market ratio, the difference is economically
small. The value firms in Fama and French (1996) have the book-to-market ratio greater than one.
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Table 2: Summary Statistics of Two Principal Components (Percentage Per Month)

Descriptive Statistics of Principal Components: Factor Correlations:

E[·] σ[·] skew kurt E[·]/σ[·] RMRFt SMBt HMLt termt deft dV IXt

Levelt 0.49 5.71 0.04 1.24 0.09 0.26 0.11 -0.03 0.03 0.33 -0.43

(se) (0.27) (0.11) (0.23)

Slopet 0.52 2.61 0.52 3.87 0.20 0.29 0.28 0.02 -0.08 0.35 -0.23

(se) (0.12) (0.11) (0.23)
Monthly returns from 1973 to 2011. Levelt and Slopet are the first and the second principal components

of the excess returns on ten bond spread sorted portfolios. skew is skewness and kurt is excess kurtosis.

RMRFt, SMBt and HMLt are the three factors of equity returns of Fama and French (1993). termt is

a return on long-term treasury bonds minus t-bills. deft is the return on long-term corporate bond index

minus long-term treasury bonds. dV IXt is the change in VIX index. The correlation between dV IXt is

computed using the data from 1990 to 2011.

realized excess returns. The pattern in β2 shows that the second principal component is a slope

factor (Slopet) whose loadings monotonically go up from the lowest decile to the highest decile.

Slopet captures another 15% of the common variation. The fact that Levelt and Slopet explain

nearly 90% of the common variation in excess returns shows that there is a strong factor structure

in excess returns on the ten portfolios.

The summary statistics of Levelt and Slopet are shown in the left panel of Table 2. Levelt has

statistically insignificant average excess returns. The average excess returns scaled by the standard

deviation is low at 0.09. Slopet, on the other hand, has the high ratio of average excess returns

to standard deviation (0.20). The high risk price of Slopet raises the possibility that Slopet may

proxy for a shock to an important state variable that is of concern to the average investor.

To study the nature of the risk in the two factors, the top panel of Figure 1 shows the cumulative

log returns on Levelt and Slopet. The gray area in the background shows the recessions identified by

NBER. Slopet is highly cyclical and tends to fall in the first half of recessions before subsequently

recovering. For the last three recessions, the fall in Slopet actually precedes each recession, which

suggests that Slopet somewhat forecasts these recessions. Furthermore, Table 2 shows that Slopet
is fat-tailed with excess kurtosis of 3.87. The cyclicality and fat-tailness of Slopet show that the

high ratio of average excess returns to the standard deviation for Slopet is not necessarily a proof

of market ineffi ciency where a good investment opportunity is left on the table. In fact, Slopet
seems like a risky investment strategy.

The right panel of Table 2 shows the correlation of Levelt and Slopet with the five bond and

equity pricing factors of Fama and French (1993). The correlations with the three equity factors

are in general low. The highest correlation is only 0.29 between Slopet and the excess returns on

equity market portfolio (RMRFt). Though issuers of high spread bonds have small equities, the

correlation between Slopet and SMBt is only 0.28. This low correlation between Slopet and SMBt

suggests that the equity and the bond markets are not fully integrated at monthly frequency.
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The correlations between the two factors and the change in the VIX index dV IXt are negative.

This is expected as an increase in volatility tends to increase an option value. Since a long position

in defaultable bonds are equivalent as a short position in put options on firm’s asset value and a

long position in a treasury bond, an increase in the VIX should affect the defaultable bond returns

negatively. However, the correlation between dV IXt and Levelt is only -0.43 and I cannot replace

one of my factors with dV IXt to keep the pricing capability of the two factor model.

I test if the two factor model consisting of Levelt and Slopet can explain the cross-sectional

variation in average excess returns. The third panel in Table 1 shows the estimated coeffi cients for

the following time-series regression

Rei,t = αi + β1,iLevelt + β2,iSlopet + εi,t (1)

and the corresponding standard errors. If the variation in bond premia is explained by the two-

factor model, then

E
[
Rei,t
]

= β1,iE [Levelt] + β2,iE [Slopet]

must hold.

I estimate (1) for all deciles (which I use to form my factors) and the three subportfolios of the

last decile.

In Table 1, β1 is around 0.3 for all portfolios but the extreme deciles, and the loading on

the spread factor β2 rises monotonically from -0.24 (the lowest decile) to 0.99 (10c of the highest

decile). The high R-squared in each regression shows that the two factors explain most of the

time-series variation in excess returns, which we expect from the fact that my factors are principal

components. The pricing errors, α, are small in general, ranging from -0.06% to 0.17% per month

and statistically insignificant. The GMM χ2 test which tests if the intercepts are jointly zero fails

to reject the two-factor model at the 10% level. (This test would be the same as the joint test

of Gibbons, Ross and Shanken (1989) if there is no lags in computing standard errors. Since the

returns show autocorrelation, I account for it for robust statistical inference.)

The fact that the betas with respect to Slopet match the cross-section of bond premia suggests

that corporate bond premia are risk premia. That is, investors may demand the premia on

corporate bonds due to their comovements with some systematic risks.

The corporate bonds with a high bond spread earn high average excess returns for three potential

reasons. First, the average investor may dislike the bond that is likely to default and therefore

demand a premium. Second, the high spread bonds are illiquid and costly to trade. Thus, the

bond premia for high spread bonds reflect the expected transaction cost which incurs at the time

of sale in the future. Third, the high spread bonds comove positively with the average investor’s

marginal utility of consumption and are exposed to the systematic risk proxied by Slopet.
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The fact that the Slopet betas match the pattern of average excess returns of corporate bonds

can be consistent with any three of these explanations above. A challenge for the irrational

preference or transaction-based explanations is that they also need to be consistent with the factor

structure of excess returns. A bond with high transaction costs should earn a high bond premium,

but why does it have to comove with other bonds with high transaction costs? Either way, in this

article, I do not offer any direct evidence in support of one explanation over the other.

4.3 Other Characteristics

To further examine the performance of the two-factor model consisting of the level and slope

factors, I sort the bonds into deciles according to the fourteen characteristics listed in Table 3. I

use previous literature in finding the characteristics associated with bond premia. I use four price-

related variables: current yield cy, market value of a bond size, the past one year average excess

returns (excluding the last month) mom and the yield to maturity on the synthetic treasury that

corresponds to the corporate bond i, try. The bond specific characteristics used in the analysis

are time to maturity τ , duration dur and the time after the issuance of the bond age. The issuer’s

fundamental variables include the (risk neutral) distance-to-default DD, the ratio of short-term

debt to the total debt sdtd, the ratio of the fixed assets over the total assets tangible and issuer’s

credit ratings rating. Since credit ratings are expressed with symbols, I transform them into

numerical variables such that AAA is 1 and C is 21. Finally, I use equity anomaly variables such

as equity size MVeq, equity book-to-market ratio B/Meq and equity momentum momeq.

The (risk neutral) distance-to-default for firm i at time t is defined by

DDi,t =
ln

Ai,t
Di,t

+
(
rt − δi,t − 1

2σ
2
i,t,A

)
σi,t,A

where Ai,t is the market value of the firm, Di,t is the default boundary, rt is the risk-free rate, δi,t
is the payout rate and σi,t,A is the conditional volatility of the returns on the firm asset. The

computational detail is shown in Appendix B. Roughly speaking, the market value of the firm is

identified such that the call option on the firms’value calculated using the Black-Scholes formula is

equal to the observed stock price in the data. If Merton’s (1973) model is correct, the cumulative

density of standard normal distribution evaluated at −DDi,t should be equal to the risk-neutral

probability of default.

The motivation for using the characteristics listed in Table 3 is clear for some variables such

as equity anomaly variables but not for others. I use sdtd because the maturity structure of the

firm is associated with the rollover risk suggested by He and Xiong (2012). I test if tangible is

associated with expected excess returns since it is used as a proxy for the tangibility of assets which

serve as collateral for borrowing under the incomplete contract theory. Though the corporate
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Table 3: List of Characteristics for Corporate Bonds

Name Definition
Price Related:

s Bond spread 1/τ logP fi,t/Pi,t
cy Current yield Coupon rate (per face value) divided by Pi,t

size Size Amount outstanding multiplied by Pi,t
mom Bond momentum Average bond return between t− 12 and t− 2
try Treasury yield Yield to maturity of the matching treasury bond at time t

Issue-specific:
τ Time to maturity Time to maturity of the bond in years

dur Duration Macaulay duration of the bond
age Age Time passed since the issuance of the bond in years

Issuer’s fundamentals:
DD Distance to default Risk-neutral distance-to-default of Merton’s model
Sdtd Sdtd Short-term debt (book value) / Total debt (book value)

tangible Tangibility Plant, Property and Equipment (book value) / Total asset (book value)
rating Ratings Credit ratings by Moody’s or S&P

Equity Anomalies:
MVeq Equity size Market value of equity
B/Meq Equity book-to-market ratio Book value of equity divided by market value of equity
momeq Equity momentum Average equity return between t− 12 and t− 2

bonds I analyze are uncollateralized bonds, higher debt capacity of the issuer might still affect its

bond premia.

The use of age as a forecaster of the returns is motivated by Bao, Pan and Wang (2010) who

show that the bond’s age is related to their measure of liquidity10. The use of try is motivated

by the findings of Gebhardt, Hvidkjaer and Swaminathan (2005) that the yield to maturity of

corporate bonds is a strong predictor of returns.

The expected excess returns on the ten portfolios sorted on characteristics as well as the regres-

sion estimates of equation (1) for each portfolio are shown in Table 4. For brevity, I report the

test result only for the first and last deciles.

Table 4 shows that the two factor model explains most of the variation in average excess returns

for portfolios sorted on all characteristics but momeq. Among the characteristics I test, cy, size,

DD, sdtd,MVeq and B/Meq give rise to statistically significant variations in estimated bond premia.

The root mean squared alpha RMSEα and the mean squared alpha MAEα are economically

small for these characteristics, as the pricing errors are mostly less than 5 basis points per month.

Also, these alphas are small relative to the variation in estimated bond premia (as shown in the

difference between high and low portfolios), which shows that the model performs well in pricing

these portfolios.

10Driessen (2005) also uses age as a proxy for liquidity.
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Table 4: Asset Pricing Test with Variety of Characteristics (Percentage Per
Month)

1 (low) 10 (high)
Characteristics E[Re] α E[Re] α 10− 1 (se) RMSEα MAEα χ2 pv[χ2] avg R2

Price-related
cy 0.07 0.02 0.41 -0.01 0.34 (0.16) 0.03 0.02 10.6 [0.39] 0.81

size 0.33 0.17 0.02 -0.08 -0.31 (0.11) 0.07 0.05 13.7 [0.19] 0.76
mom 0.23 -0.04 0.11 -0.03 -0.12 (0.10) 0.02 0.02 5.7 [0.84] 0.75
try 0.14 0.06 0.04 -0.05 -0.10 (0.09) 0.05 0.05 12.8 [0.23] 0.71

Issue-specific
τ 0.08 0.01 0.01 -0.07 -0.07 (0.09) 0.04 0.03 24.3 [0.01] 0.78

dur 0.09 0.02 -0.04 -0.08 -0.13 (0.08) 0.04 0.03 20.3 [0.03] 0.77
age 0.07 -0.01 0.08 0.00 0.00 (0.05) 0.03 0.03 16.1 [0.10] 0.78

Issuer’s fundamentals
DD 0.43 0.03 0.03 0.01 -0.40 (0.13) 0.03 0.02 5.7 [0.84] 0.75
sdtd 0.11 0.00 0.01 -0.06 -0.10 (0.05) 0.02 0.02 4.4 [0.93] 0.73

tangible 0.05 -0.08 0.06 -0.03 0.01 (0.06) 0.05 0.04 14.1 [0.17] 0.72
rating -0.01 -0.01 0.33 -0.06 0.34 (0.17) 0.03 0.02 5.0 [0.89] 0.76

Equity Anomalies
MVeq 0.31 0.01 -0.03 -0.07 -0.34 (0.12) 0.04 0.03 22.2 [0.01] 0.76
B/Meq 0.05 -0.03 0.24 0.03 0.19 (0.08) 0.04 0.03 10.3 [0.42] 0.76
momeq 0.03 -0.26 0.21 0.09 0.18 (0.12) 0.09 0.06 44.6 [0.00] 0.77

All Bond/Issuer Characteristics (High and Low only) 0.05 0.04 34.21 [0.06]
All Characteristics (High and Low only) 0.07 0.05 69.81 [0.00]

Asset pricing test using time series regressions: Rei,t = αi+β1,iLevelt+β2,iSlopet+εi,t. Monthly returns from
1973 to 2011. The bonds are sorted into 10 portfolios every year according to characteristics except for mom
andmomeq. Formom andmomeq, the portfolios are sorted every month. Low is the first decide and High is

the tenth decile and H-L shows the difference between the tenth and first deciles. RMSEα ≡
√

1
10

∑10
i=1 α

2
i

and MAEα ≡ 1
10

∑10
i=1 |αi|. χ2 is the GMM test statistics of the null that the intercepts are jointly zero for

all ten deciles and χ2 [pv] is the corresponding p-value. avg R2 is the R-squared of the time-series regression
averaged over 10 portfolios. The characteristics used are defined in Table 3. The standard errors are in
parenthesis and computed using Newey and West (1987) 12 lags.
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The GMM χ2 test which tests if the intercepts αi are jointly zero for all of the ten portfolios

mostly fails to reject the model except for τ , dur, MVeq and momeq. For τ , dur and MVeq, the

pricing errors are economically small as RMSEα is 4 basis points and MAEα is 3 basis points.

Therefore, the statistical rejection of the model seems to come from the fact that these alphas are

very well measured. In such cases, the two factor model can still be used as a reasonable description

of the bond premia.

On the other hand, the two factor model fails to explain the variation in estimated bond premia

associated with momeq. In this case, the model works in the ‘wrong’direction in the sense that

the magnitude of alphas is greater than the magnitude of estimated bond premia. For the first

decile (low portfolio), the estimated bond premium is only 3 basis points while the magnitude of

the alpha is as large as -26 basis points. This large alpha leads to relatively large RMSEα (9 basis

points) and the statistical rejection of the model.

The last two rows of Table 4 show the joint test if the intercepts are zero for multiple charac-

teristics. The second last row shows the test if intercepts are jointly zero for the first and the last

deciles of the first eleven characteristics (from cy to rating). In other words, I am testing if the 22

portfolios in the high end and the low end of the 11 univariate sorts have jointly significant alphas.

RMSEα is small at 5 basis point, which is good given that I am using only extreme deciles and thus

the variation in estimated bond premia is large. The model cannot be rejected at the conventional

5% level. This result suggests that the two factor model can price the portfolios associated with

multiple characteristics at once, when portfolios are formed using univariate sorts.

On the other hand, when I test if the intercepts are jointly zero for the first and the last deciles

of all of the 14 characteristics (i.e. 28 portfolios in total), the model is rejected at the 5% level.

Including the equity momentum sorted portfolios causes a problem for the two factor model again.

Another interesting point in Table 4 is that the factor structure of corporate bond excess returns.

avg R2 in Table 4 shows the R2 of time-series regressions averaged across the ten portfolios for each

characteristic. avg R2 is in general high and ranges from 0.7 to 0.8. The high avg R2 implies

that the first two principal components constructed from the portfolios sorted on bond spread also

explain the common variation in excess returns on other portfolios. The common factor structure

in corporate bond returns seems to exist no matter what characteristics we use to sort bonds.

The high avg R2 in realized return is comforting as I can motivate my two factor model by the

Arbitrage Pricing Theory of Ross (1976). On the other hand, the high avg R2 raises a question why

I use the two principal components of the bond spread-sorted portfolios rather than other principal

components. Maybe the first two principal components of the portfolios sorted on current yields

will do an equally good job. Instead of showing the empirical result using 14 other potential sets

of factors against hundreds of potential test assets, I support my choice by claiming that the bond

spread is the cleanest price variable associated with bond premia.

For an individual bond, the bond spread must forecast its excess return or its default loss. For
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a portfolio, the bond spread must forecast the portfolio excess returns or the credit shocks to the

portfolio which cause individual bonds in the portfolio to migrate to another portfolio. Bond

spreads are the variables that should have information about the distribution of future excess

returns on corporate bonds. Therefore, it is the most natural variable to sort corporate bonds and

form factors. By sorting securities using bond spreads, I can alleviate the concern that my two

factors earn premia and thus work as a pricing kernel only in my sample period. Unless one firmly

believes that the greater bond spread always forecasts negative credit events (such as defaults), it

must forecast excess returns and therefore Slopet should earn the premia.

4.4 Comparison with Gebhardt, Hvidkjaer and Swaminathan (2005)

To clarify the contribution of this paper to the literature, I also test the two factor model of

Gebhardt, Hvidkjaer and Swaminathan (2005) which is based on termt and deft of Fama and

French (1993), using the same test assets as in Table 1 and Table 4. The detailed result is

available upon request and I summarize my findings here. When I test if the two factor model

consisting of termt and deft can price the ten portfolios sorted on the bond spread, I find that the

model has no power to explain the variation in estimated bond premia.

The reason for the poor performance of termt and deft is simple: these two factors have nearly

zero average returns in my sample and the resulting alphas are basically the same as the estimated

bond premia. For example, deft, which takes a long position in long-term corporate bonds and

takes a short position in a long-term (about 20 years) treasury bond, has the average excess returns

of -1 basis point per month in my sample. This value is lower than 2 basis points reported in Fama

and French (1993) who use the sample period from 1963 to 1990. Gebhardt, Hvidkajaer and

Swaminathan (2005) construct deft in a slightly different manner but following the same principle

(long-term corporate bond returns based on their sample minus long-term treasury bond returns)

and find that deft earns the average excess returns of 4 basis points over the sample period from

1973 to 1996. Since my sample includes the financial crisis of 2008, it makes sense that deft has

even lower average excess returns in my test. Due to the near zero average excess returns, the

two factor model consisting of termt and deft have nearly no explanatory power of the test assets

analyzed in this article.

5 Parametric Characteristic-based Asset Pricing Test

5.1 Idea

In the previous section, I test the two factor model using traditional portfolio sorts based on one

characteristic in each test. This is not satisfactory as investors can take advantage of multiple

characteristics at once in forming their investment strategy. A simple way to address this concern
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is multidimensional sorts. Just as Fama and French (1993) sort stocks based both on size and

book-to-market ratio, I can do two-way sorts of corporate bonds. However, a higher dimensional

sort is impractical particularly when there is a lot of information in the tail of the distribution

of characteristics. In Table 1, splitting the last decile into three subportfolios uncovers a large

variation in bond premia. If an economist does the same for multiple characteristics, she will

quickly run out of data points to form portfolios. This problem is even worse for corporate bonds

since the size of my sample is small in the 1970s. For example, I only have 19 bonds in January

1973. The small sample size of the corporate bond data makes it necessary for a researcher to be

more resourceful in using the data.

In this section, I characterize bond premia as a smooth function of characteristics. I also

characterize risk as a function of characteristics, and test if these two functions match. I call this

approach the parametric characteristic-based approach.

To get an idea of the difference between portfolio sorts and the approach adopted here, I make

two plots which describe these tests in Figures 2 and 3. Figure 2 is a graphical reproduction of

the result of Table 1. In the classic test, we express the bond premia and betas as a function

of portfolio rankings which reflect the variation in bond spreads. As in the figure, the estimated

betas for Slopet go up as we move from left to right, so do the average excess returns. Since the

increasing pattern in the average excess returns is matched by the increasing patterns in the betas,

the model prices these portfolios successfully.

The top panel of Figure 3 shows the corresponding result of the parametric characteristic-based

test. Before going into the detail, I will explain the intuition of the test. In this case, I express

the bond premia and a measure of the risk, expected comovements (that will be defined clearly

below), as a smooth function of bond spreads. In this example, I express the bond premia and

expected comovements as functions of a bond spread, a squared bond spread and square-root of a

bond spread.

Figure 3 also shows that the model seems successful in pricing the variation in bond premia

associated with bond spreads. The expected excess return function seems to be matched well

by the model-implied counterpart, which is a linear combination of the two expected comovement

functions E [V ]. In particular, the expected comovements with the slope factor Slope E [V ] seems

parallel to the expected excess return function in the data, which suggests that the slope factor is

the key to the success of the model.

Using a smooth function reduces the number of parameters to be estimated, which makes it

easy to accommodate multiple characteristics in an asset pricing test. Of course, the benefit comes

with some costs. If the assumed functional form is incorrect, then the test becomes misspecified.

However, in this case, there seems to be little nonlinearity in the expected excess returns. To see

this, I re-express the point estimates of bond premia from portfolio sorts as a function of bond

spreads (not a function of ranking) in the top panel of Figure 3. The dotted line with circles
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Figure 2: Asset Pricing Test Based on Portfolio Sorts

shows the estimated bond premia based on portfolio sorts11. This non-parametric estimates of

bond premia do not produce a complex functional form of bond premia. Rather, the estimated

bond premia seem to go up smoothly from left to right.

When we look at the pattern in estimated bond premia in Table 1, we might conclude that

the bond premia jump up in the last decile and it is hard to replicate such a jump with a smooth

function. When we express the bond premia as a function of underlying characteristics, the jump

goes away and it seems feasible to fit a smooth function.

The bottom panel of Figure 3 shows the histogram of the bond spread. As we can see, the

distribution is highly skewed and the most of the observations are below 0.2% per month. The

white and gray colors in the panel correspond to the cutoff values (averaged over time) for the ten

portfolios analyzed in Table 1. For example, the white area at the left end of the figure shows

these bonds will be mostly in portfolio one, while the gray area at the center to the right shows that

these bonds will be mostly in the last decile. This means that when sorting securities into bins,

we are throwing a lot of variation in characteristics away by averaging all the extreme observations

in the last decile.

Of course, the point of fitting a functional form is to use multiple characteristics at once, not

just bond spreads as shown in Figures 2 and 3. Based on the intuition developed by comparing

Figures 2 and 3, I formally define the parametric characteristic-based approach in the next section.

11Strictly speaking, the data points in Figure 3 differs from the portfolio sorts in Table 1 as the figure shows the
result of the regression (3) using dummy variables. Since the weights assigned to each security in regression (3) is
different from portfolio sorts, there is a slight gap in the estimated bond premia between Table 1 and Figure 3.
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5.2 Three-step Procedure

I describe the parametric characteristic-based asset pricing test using a simple three-step estimation

procedure. I test the model which specifies K factors ft = (f1,t, . . . , fK,t) driving the stochastic

discount factor. Let zi,t be the L dimensional vector of instruments for bond i observed at time t.

Traditionally, these instruments are macro variables such as lagged market returns or consumption

growth rates (for example, see Ferson and Harvey (1991)). In the characteristic-based test, zi,t
includes smooth functions of characteristics ci,t of each asset i at time t. The characteristics drive

the individual securities’bond premia and expected comovements with factors.

Let Vi,t+1 ≡ Rei,t+1ft+1. The asset pricing model states that

E
[
Rei,t+1|ci,t

]
= E [Vi,t+1|ci,t]λ (2)

where ci,t is a vector of characteristics and λ is a K dimensional vector of factor risk weights. That

is, if the model is correct the expected excess return function is equal to a linear combination of

the expected comovement functions E [Vi,t+1|ci,t].

I test (2) using a simple three-step estimation procedure. First, I pick an instrument vector

zi,t which is a function of characteristics ci,t. I estimate the expected excess return function by the

pooled OLS regression

Rei,t+1 = zi,tbr + εri,t+1 i = 1, . . . , N, t = 1, . . . , T (3)

where N is the number of bonds and T is the number of months. Recall that i denotes individual

bond i as opposed to a portfolio. I forecast individual security excess returns Rei,t+1 with the

function of its characteristics zi,t.

Second, I estimate the expected comovement function by the pooled OLS regression

Vi,t+1 = zi,tbv + εvi,t+1 i = 1, . . . , N, t = 1, . . . , T (4)

(3) and (4) yield the estimated functions Ê
[
Rei,t+1|ci,t

]
= zi,tb̂r and Ê [Vi,t+1|ci,t] = zi,tb̂v, where

b̂r and b̂v are the OLS estimates of br and bv respectively.

Third, I estimate the factor risk weight λ by regressing estimated expected excess returns on

estimated expected comovements. That is, I run the pooled OLS regression

zi,tb̂r = zi,tb̂vλ+ αi,t i = 1, . . . , N, t = 1, . . . , T (5)

Let λ̂ be the estimate of λ. The sample counterpart of equation (2) implies that

b̂r = b̂vλ̂ (6)
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That is, the parameters that characterize the expected excess return function must be completely

matched by a linear combination of the parameters of the expected comovement functions. Since

zi,t is L dimensional, we need to match the L dimensional vector br with a combination of K vectors

that are the columns of bv (bv is a L×K matrix).

This procedure is closely related to the classic asset pricing test based on portfolio sorts. In

the characteristic-based test, the expected excess returns are estimated using the average excess

returns on the dynamic investment strategy based on zi,t. Each entry of zi,t gives us the weight

on security i to execute the strategy.

In the classic test, the portfolios are formed by sorting securities into bins. Suppose that

zi,t are dummy variables which take a value of one if the observation is for a particular portfolio.

Then running regression (3) is equivalent to taking sample average of realized portfolio returns and

running (4) is essentially the same as taking average of realized comovements at the portfolio level.

The third regression (5) is a cross-sectional regression using portfolio average excess returns and

portfolio average comovements. Therefore, the asset pricing test based on classic portfolio sorts

is a special case of the characteristic-based approach. The key difference between classic portfolio

sorts and the parametric approach lies in the choice of instruments. The instruments I use are

smooth functions of characteristics, not dummy variables associated with characteristics.

The average excess returns on the portfolios formed by sorting securities into bins are the

non-parametric estimates of the expected excess return function. In the parametric characteristic-

based approach, I essentially form portfolios by running regressions and estimate the expected

excess return function parametrically.

The dimension of zi,t corresponds to the number of test assets in the classic test. Thus for the

characteristic-based test to have power, one needs to have L > K. Fama and French (1996) test

the three factor model using 25 size and book-to-market sorted portfolios and thus have 25 assets to

price. In the characteristic-based approach, if expected excess returns are linear functions of size

and book-to-market ratio, zi,t will be a two-dimensional vector, and we have two assets to price.

To see if we statistically reject the null hypothesis (6), we can apply the standard χ2 test result

of the GMM estimator. That is, compute

ET
[
z′i,thi,t+1

]′
cov

(
ET
[
z′i,thi,t+1

])−1
ET
[
z′i,thi,t+1

]
∼ χ2L−K (7)

where ET [·] is a sample average operator and hi,t+1 ≡ Rei,t+1−Vi,t+1λ. This test asks if the alphas
for L strategies formed based on zi,t are jointly statistically significant or not.

5.3 Benefits of Parametric Characteristic-based Test

There are a number of benefits of using the parametric characteristic-based asset pricing test instead

of the classic test based on portfolio sorts. Rather than going into detail, I list the benefits here
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and provide supporting evidence in the empirical analysis that follows.

First, with the parametric characteristic-based approach, one can conduct an asset pricing

test with multiple characteristics. By sorting securities into portfolios along some characteristics,

variations in other characteristics will be lost. Practically speaking, we can only sort securities

using up to two or three characteristics even for equities that have a larger sample size. Thus,

sorting securities into portfolios makes it impossible to test the performance of the proposed asset

pricing model along more than three characteristics at once. Due to this limitation researchers

often test the model along one or two characteristics at a time, neglecting the interaction between

multiple characteristics. This is the main reason why I adopt this approach in analyzing corporate

bonds as there are a few securities in the earlier part of my sample.

Second, for the asset pricing test to be powerful, greater variation in expected comovements is

desirable. By sorting securities into bins along particular characteristics, some of the variation in

expected comovements is lost, which results in (statistically) less effi cient estimates of the factor

weight parameter λ0. This is why Ang, Liu and Schwartz (2010) propose to use individual securities

to conduct an asset pricing test.

Third, when sorting securities into portfolios, we essentially impose time fixed effects in esti-

mating expected excess return functions and expected comovement function. That is, a researcher

focuses on cross-sectional variation in expected excess returns in evaluating the asset pricing model.

In a classic asset pricing test based on sorts, the test assets are the portfolios sorted on the

past characteristics. These portfolios are created based on the strategies of buying the bonds with

relatively high characteristics at each point in time. If the characteristics of all bonds increase at

some time, this trading strategy does not do anything in capturing the variation in expected excess

returns observed then relative to the past. Thus in the standard asset pricing test using portfolios,

economists ask if the asset pricing model can price the cross-sectional variation in expected excess

returns, but not the time-series variation.

With the characteristic-based test with no time fixed effects, the model can be asked to price

variation of bond premia both over time and in a cross section. Therefore, using all the individual

bonds in a characteristics-based test helps us test an implication of the model other than cross-

section of expected excess returns. Since the goal of this paper is to explain the cross-sectional

variation in bond premia, I will not take advantage of this flexibility in this article and include time

fixed effects in the empirical analysis that follows.

In the classic test based on sorts, a key motivation to form portfolios is to reduce the noise

in the estimated betas. In the parametric characteristic-based asset pricing test, the expected

excess return function (3) and the expected comovement function (4) can be estimated with all the

panel observations of individual bonds. The use of the entire panel of individual bonds makes the

estimated expected excess returns and comovements precise given the specification of the functional

form. As a result, the concern about noise in the estimates does not invalidate the use of individual
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bonds as test assets. This point will be quantitatively supported in the next section.

5.3.1 Standard Errors of Expected Comovements

One reason why researchers started to use portfolio sorts was to reduce the noise in estimated

betas. The parametric characteristic-based approach addresses the issue by projecting the realized

comovements onto characteristics. To show the reliability of the estimated expected comovements, I

use a bond spread, a squared bond spread and square-root of a bond spread for zi,t as an illustrating

example. I run a regression (4) and I compute the corresponding standard errors of the estimated

expected comovements σ
[
Ê
[
V
[k]
i,t+1|zi,t

]]
=

√
zi,tcov

(
b̂
[k]
v

)
z′i,t where V

[k]
i,t+1 is the k-th element in

Vi,t+1 and b̂
[k]
v is the k-th column of the matrix b̂v. Since the standard error depends on zi,t, I pick

the percentiles of the distribution of bond spreads.

Table 5 shows the estimates of the standard errors and the estimated expected comovements for

the percentiles of the bond spread. As we can see, the standard errors of the expected comovements

are small relative to the variation in expected comovements. For Slopet+1, the expected comove-

ments vary from -0.7 to 11.9 as the spread increases from the 1st percentile to the 99th percentile,

while their standard errors are 0.37 and 3.09, respectively. The difference between the 5th and

95th percentiles are highly statistically significant. Since the precision of the estimates depends on

the noise in b̂v, this conclusion does not depend on the particular choice of the percentiles. Overall,

these figures show that the estimated expected comovements are well measured despite the fact

that I use individual securities.

Sorting securities into portfolios is an effective way to reduce the standard errors of the estimated

expected comovements. However, portfolio sorts are not the only way to improve precision of the

estimates. What is truly needed is a projection of comovements onto a set of characteristics that

forecast comovements well. Portfolio sorts can be thought of as a non-parametric regression, while

in contrast the parametric characteristic-based approach uses a parametric regression. The key

is the choice of instruments. The fact that the betas of individual securities are typically poorly

measured suggests that the dummy variables for the name of securities are not good instruments

to project on. The bond spread seems to be a good instrument in this respect and we can do

projections either parametrically or non-parametrically.

5.4 Estimating Expected Excess Return Function

To describe the variation in expected excess returns on individual bonds, I run regression (3)

using instruments zi,t that are linear functions of characteristics associated with expected excess

returns. To see whether the assumption of linearity is satisfactory, in Appendix C, I show a series

of analysis about the functional form using non-parametric regression with Gaussian kernel for each

characteristic I use. Based on the non-parametric regression result, I transform size and time to
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Table 5: Standard Errors of Estimated Expected Comovements

Levelt+1 Slopet+1

si,t Ê[Vi,t+1|zi,t] σ[Ê[Vi,t+1|zi,t]] Ê[Vi,t+1|zi,t] σ[Ê[Vi,t+1|zi,t]]
1% 3.3 (0.74) -0.7 (0.37)

5% 4.6 (1.01) -0.8 (0.51)

50% 9.1 (1.79) -1.0 (0.94)

95% 20.2 (3.54) 3.2 (1.94)

99% 26.3 (6.68) 11.9 (3.09)

95%− 5% 15.6 (3.01) 4.0 (1.56)

Ê [Vi,t+1] = zi,tb̂v, where b̂v is the OLS estimate. The values in parenthesis are standard errors of Ê [Vi,t+1]

computed by

√
zi,tcov

(
b̂
[k]
v

)
z′i,t where zi,t are functions of the percentile values of the bond spread. The

F-statistics for b̂v for Levelt+1 is 16.7 with the p-value of 0.00. The F-statistics for b̂v for Slopet+1 is 11.0

with the p-value of 0.00.

maturity with log to make the relationship with returns closer to be linear. I also demeaned market

value-related variables such as size by the cross-sectional average in each month to maintain the

stationarity. After such transformations, when I analyze each characteristic separately, a linear

function seems to fit the data reasonably well. I also scale each characteristic so that it has a unit

standard deviation.

Table 6 shows the estimation result. I run both univariate and multivariate regressions using

the characteristics which give rise to statistically significant variations in estimated bond premia

when I use them to sort corporate bonds into deciles. Specifically, I use s, cy, log size, DD, sdtd,

logMVeq and B/Meq. Furthermore, I include momeq in this test as my two factor model has a

trouble pricing the portfolios sorted on momeq.

The top panel of Table 6 shows the result of the univariate regressions. Since I am using only

the characteristics that are associated with estimated bond premia based on portfolio sorts, the

slope coeffi cient br should be statistically significant. The result in the top panel of Table 6 shows

that cy, log size and B/Meq do not have statistically significant slope coeffi cients possibly due to

the linearity assumption.

The bottom panel of Table 6 shows the result of the multivariate regression. When all the

characteristics are used at the same time, only five characteristics have economically significant

coeffi cients: s, cy, log size, logMVeq and momeq. Thus, in my main empirical result using the

parametric characteristic-based approach, I use these five characteristics as instruments.
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Table 6: Multivariate Return Forecasting Regression

Characteristics s cy log size DD sdtd logMVeq B/Meq momeq

Univariate Regression:

br 0.51 0.02 -0.04 -0.06 -0.03 -0.06 0.01 0.06

t(br) (4.18) (0.61) (-1.41) (-3.73) (-2.25) (-2.91) (0.79) (2.69)√
1
NT

∑
i,t (zi,tbr)

2 0.26 0.01 0.03 0.05 0.03 0.06 0.01 0.05

Multivariate Regression:

br 0.52 0.06 -0.14 -0.02 -0.01 0.05 -0.01 0.07

t(br) (4.32) (0.92) (-2.57) (-1.07) (-0.57) (1.85) (-0.89) (3.51)√
1
NT

∑
i,t (zi,tbr)

2 0.35 F-statistics: 10.0 [0.000]
Monthly observations from 1973 to 2011. I estimate br by regressions Rei,t+1 = zi,tbr + εri,t+1. si,t is the

bond spread for bond i at time t. To put time fixed effects, I demeaned the vector zi,t by subtracting the

time-specific mean z̄t ≡ 1
Nt

∑Nt

i=1 zi,t. Each observation is weighted by the square root of relative value of

the bond at time t. The numbers in parenthesis are t-statistics, where standard errors are computed taking

into account 12 lags of serial correlations (with Newey and West (1987)’s weighing).

5.5 Practical Issues in Parametric Characteristic-based Test

5.5.1 Attenuating Extreme Observations

In the characteristic-based test using individual bonds, the estimated coeffi cients br and bv may

be sensitive to extreme observations. This is true especially when I include higher-order terms of

characteristics (such as squared bond spread) in zi,t. Small difference in br and bvλ can translate

into a large pricing error for a large value of the characteristic.

In the classic asset pricing test using portfolio sorts, a security with an extreme value of char-

acteristics is averaged out with other securities in the extreme portfolio. This is especially the

case for the size and book-to-market sorted 25 portfolios of Fama and French (1993) where the

threshold of characteristics are set using NYSE stocks only. As a result, the stocks with extreme

characteristics (that are typically small and more likely to be NASDAQ stocks) will end up in

one or two portfolios that have many securities to average across. This practice is justified for

noise-reduction reasons.

To downweight the extreme observations in the characteristic-based asset pricing test, I value-

weight the observations. Since the characteristic-based test involves panel data and the market

value of bonds grows over time, a naive use of the market value at time t as a weight will downweight

old observations too much. Thus I multiply
(
Rei,t+1, Vi,t+1, zi,t

)
with weight wi,t defined by

wi,t ≡
√

MVi,t∑
j∈JtMVj,t
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where Jt is the set of the bonds that are in sample at time t.

5.5.2 Computing Standard Errors

The three step estimation of λ described in (5) boils down to a one step minimum distance estima-

tion of the moment conditions E
[
z′i,t

(
Rei,t+1 − Vi,t+1λ

)]
= 0, with a weighting matrix E

[
z′i,tzi,t

]−1
.

Thus it is straightforward to compute standard errors using the GMM framework. The panel data

I use has a large number of securities that is highly correlated with each other. To account for the

correlation across securities, I first compute the standard errors clustered by time and then add

several time lags. The exact number of lags added is specified in each test result.

As the cross section is large relative to the time-series, one may be concerned about the re-

liability of the estimated standard errors. To address this concern I also compute the standard

errors imposing some structural assumptions on shock vectors. I apply the structural assumptions

suggested by Ang, Liu and Schwartz (2010) and compare the performance of the computed stan-

dard errors in Appendix D. Appendix D shows that these alternative methodologies of computing

standard errors seem to produce similar results. Thus in the following empirical analysis, I show

the standard errors clustered by time (with several lags added).

5.6 Empirical Result

Below I implement the parametric characteristics-based test of the two-factor asset pricing model

using various set of characteristics.

5.6.1 All Characteristics but Equity Momentum

First, I use all the characteristics except for momeq in the set of instruments. That is, I use s, cy,

log size and logMVeq as my test characteristics. I apply the three step procedure and report the

result in Table 7.

The first step regression (in the top panel) shows estimated bond premia as a linear function of

the characteristics that I use. The corporate bond with a high spread, a high current yield, a low

market value and a high issuer’s market value of equity earns higher excess returns going forward.

The resulting variation in estimated bond premia

√
1
TN

∑
i,t

(
zi,tb̂r

)2
is 38 basis points per month.

In comparison, the same statistic for the variation in E (Re) of the ten portfolios in Table 1 is 23

basis points. Thus, in the parametric characteristic-based approach, we have economically sizable

variations in estimated bond premia which the model needs to match.

The second step regression (in the middle panel) shows the estimates of the expected comove-

ment function. As I have two factors, there are two regressions. The point estimates for bv show

the way in which the estimated risk varies along with the characteristics. The comovements with
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Levelt has a large positive loading on cy. Thus, Levelt helps explain the variation in estimated

bond premia associated with cy. The comovements with Slopet, on the other hand, has a large

positive loading on s and thus helps explain the variation in bond premia along s. Both factors

have the loadings on log size and logMVeq that have the same sign as the estimated br in the first

step. That is, both factors help explain the variation in bond premia associated with log size and

logMVeq.

The third step regression is reported in the third panel of Table 7. The estimated λ is 0.01

and 0.10 for Levelt and Slopet, respectively. The estimated λ for Levelt is insignificant while it is

highly significant for Slopet. This is consistent with the fact that Levelt does not earn statistically

significant average excess returns in my sample while Slopet earns significant average excess returns

(as shown in Table 2).

If the model performs well, (6) should hold. To see this, I report b̂vλ̂ in the third panel. As

we can see, b̂vλ̂ are very close to b̂r, which implies that the model does well in pricing these test

assets. In other words, the model can produce the expected comovement functions that closely

match the expected excess return function.

The third panel of Table 7 shows another diagnosis of the model. RMSEα and MAEα are

0.11% and 0.09% per month, respectively. They are larger than the case of univariate sorts and it

is reasonable given that I use all the four characteristics jointly here. The R-squared is as high as

0.93, meaning 93% of the variation in estimated bond premia is matched by the two factor model.

The pricing errors are jointly statistically insignificant, as the GMM χ2 test fails to reject the model

at the 10% level.

Multiplying λ with E [f ′f ] yields the estimated bond premium for each factor. The bond

premia for Levelt and Slopet are 0.37% and 0.71% per month, respectively. Levelt is assigned a

smaller premium than its average excess returns (0.49%) and Slopet is assigned larger premium

than its average excess returns (0.52%). The gap between the average excess returns and the

estimated bond premium using the parametric characteristic-based approach raises the concern

that I may be mispricing the factors to price the test assets.

To alleviate this concern, I also test if the two factors are priced correctly or not, using the

point estimates λ̂. This is a calibration-verification exercise of Hansen (2008) which accounts for

the fact that λ̂ are estimated using the test assets. The test (not in the table) fails to reject the

null that alphas for the two factors are jointly zero and thus supports the model’s performance.

In the parametric characteristic-based approach, it is important to have large values of F-

statistics for the second step regression. As the three step procedure is an application of a standard

instrumental variable regression, the usual caution about weak instruments applies. Staiger and

Stock (1997) point out that including instruments that weakly forecast endogenous variables (Vi,t
in my case) causes a problem in the small sample behavior of the estimates. To detect weak instru-

ments, one can compute the statistics of Cragg and Donald (1993), a relative of F-statistics which
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accounts for the interactions between multiple endogenous variables. In my specific setting, the

interaction between Vi,t for Levelt and Slopet does not matter as these two factors are uncorrelated

by construction. Thus, the statistics of Cragg and Donald (1993) reduce to the minimum of the

two F-statistics computed in the second step.

In Table 7, I have the minimum F-statistics of 15.2. This value is large relative to the cutoff

values of a weak instrument test reported in Stock and Yogo (2002). Thus, the set of instruments

s, cy, log size and logMVeq jointly forecasts comovements well enough.

In conclusion, the two factor model matches well the variation in estimated bond premia asso-

ciated with s, cy, log size and logMVeq jointly.

5.6.2 All Characteristics but Equity Momentum with Interaction

The advantage of the parametric characteristic-based approach over the joint test using univariate

sorts (as in Table 4) is that one can allow for interactions among characteristics. If one uses

univariate sorts of equities based on size and book-to-market ratio and tests if the intercepts are

jointly zero for all portfolios, the ‘small growth stocks’ effect (Fama and French (1993)) will be

missed.

With the parametric characteristic-based approach, one can easily account for interactions by

including the interaction terms in the set of instruments and conducting the test in the same

manner.

As an example, I include the four characteristics tested in the previous section (s, cy, log size

and logMVeq) and the interaction terms with log time to maturity τ̃ . Though log time to maturity

itself does not lead to a significant variation in bond premia, it is interesting to ask if the effect of

the characteristics becomes greater for long-term bonds than for short-term bonds.

Table 8 shows the test result. Now I have eight instruments as I add s, cy, log size and logMVeq

multiplied by τ̃ to the previous set of instruments. s · τ̃ and log size · τ̃ give rise to a statistically
significant variation in estimated bond premia. In the first step, the effect of the bond spread is

more pronounced for long-term bonds (br for s · τ̃ is positive) and the effect of size is attenuated
for long-term bonds (br for log size · τ̃ is positive).

The eight characteristics jointly significantly forecast comovements as well, as we can see from

the F-statistics in the second step.

The result for the third step regression shows that despite the greater number of instruments,

the two factor model has no problem in pricing these test assets. RMSEα and MAEα are small

at 0.06% and 0.04% per month, respectively. The model cannot be rejected at the 10% level.
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Table 7: Asset Pricing Test with Four Characteristics

1st step: Rei,t+1 = zi,tbr + εri,t

s cy log size logMVeq

√
1
NT

∑
(zi,tb̂r)

2 F-stats

b̂r 0.53 0.06 -0.16 0.04 0.38 6.7

t(b̂r) (4.32) (0.95) (-2.38) (1.63) [0.000]

2nd step: Vi,t+1 = zi,tbv + εvi,t

s cy log size logMVeq

√
1
NT

∑
(zi,tb̂v)

2 F-stats

b̂v,Level 1.05 4.56 -1.05 0.29 2.99 15.8

t(b̂v,Level) (0.54) (4.98) (-1.25) (0.92) [0.000]

b̂v,Slope 5.41 -0.39 -0.62 0.17 2.80 15.2

t(b̂v,Slope) (6.58) (-0.74) (-1.45) (1.35) [0.000]

3rd step: zi,tb̂r = zi,tb̂vλ+ αi,t

s cy log size logMVeq

b̂vλ̂ 0.55 0.01 -0.07 0.02

Level Slope RMSEα MAEα R2α χ2

λ̂ 0.01 0.10 0.11 0.09 0.93 2.04

t(λ̂) 1.10 4.70 [0.360]

Premium 0.37 0.71
Monthly observations from 1973 to 2011. I estimate br, bv and λ by three regressions Rei,t+1 = zi,tbr+εri,t+1,

Vi,t+1 = zi,tbv + εvi,t+1 and zi,tb̂r = zi,tb̂vλ + αi,t. To put time fixed effects, I demeaned the vector zi,t
by subtracting the time-specific mean z̄t ≡ 1

Nt

∑Nt

i=1 zi,t. Each observation is multiplied by the square

root of relative value of the bond at time t. The numbers in parenthesis are t-statistics, where standard

errors are computed taking into account 1,12 and 12 lags of serial correlations (with Newey and West

(1987)’s weighing) for λ, br and bv, respectively. Premium is computed by E
[
f ′t+1ft+1

]
λ and expressed in

percentage per month. χ2 is chi-squared statistics of Hansen (1982). The numbers in bracket are p-values.

RMSEα ≡
√

1
NT

∑
i,t α

2
i,t and MAEα ≡ 1

NT

∑
i,t |αi,t|. R2α is R-squared defined by 1−

∑
α2it∑

(zitbr)
2 .
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Table 8: Asset Pricing Test with Four Characteristics and Interactions

1st step: Rei,t+1 = zi,tbr + εri,t

s cy log size logMVeq s · τ̃ cy · τ̃ log size · τ̃ logMVeq · τ̃
√

1
NT

∑
(zi,tb̂r)2 F-stats

b̂r 0.28 0.02 -0.33 0.18 0.25 -0.01 0.07 -0.04 0.37 4.6

t(b̂r) (2.39) (0.30) (-3.38) (2.59) (3.28) (-0.65) (2.40) (-1.78) [0.000]

2nd step: Vi,t+1 = zi,tbv + εvi,t

s cy log size logMVeq s · τ̃ cy · τ̃ log size · τ̃ logMVeq · τ̃
√

1
NT

∑
(zi,tb̂v)2 F-stats

b̂v,Level 3.42 -2.41 -1.00 1.38 2.06 1.80 0.45 -0.22 5.16 11.6

t(b̂v,Level) (2.93) (-3.22) (-0.79) (1.95) (2.28) (7.59) (1.25) (-0.78) [0.000]

b̂v,Slope 2.11 0.59 -1.19 0.59 2.24 -0.47 0.23 -0.11 2.80 9.7

t(b̂v,Slope) (2.77) (1.70) (-1.98) (1.59) (6.57) (-4.00) (1.30) (-0.91) [0.000]

3rd step: zi,tb̂r = zi,tb̂vλ+ αi,t

s cy log size logMVeq s · τ̃ cy · τ̃ log size · τ̃ logMVeq · τ̃
b̂vλ̂ 0.25 0.02 -0.13 0.08 0.25 -0.02 0.03 -0.01

Level Slope RMSEα MAEα R2α χ2

λ̂ 0.02 0.09 0.06 0.04 0.97 10.52

t(λ̂) 0.42 4.64 [0.105]

Premium 0.56 0.67
Monthly observations from 1973 to 2011. I estimate br, bv and λ by three regressions Rei,t+1 = zi,tbr+εri,t+1,

Vi,t+1 = zi,tbv + εvi,t+1 and zi,tb̂r = zi,tb̂vλ + αi,t. τ̃ is log time to maturity. To put time fixed effects,

I demeaned the vector zi,t by subtracting the time-specific mean z̄t ≡ 1
Nt

∑Nt

i=1 zi,t. Each observation is

multiplied by the square root of relative value of the bond at time t. The numbers in parenthesis are t-

statistics, where standard errors are computed taking into account 1,12 and 12 lags of serial correlations (with

Newey and West (1987)’s weighing) for λ, br and bv, respectively. Premium is computed by E
[
f ′t+1ft+1

]
λ

and expressed in percentage per month. χ2 is chi-squared statistics of Hansen (1982). The numbers in

bracket are p-values. RMSEα ≡
√

1
NT

∑
i,t α

2
i,t and MAEα ≡ 1

NT

∑
i,t |αi,t|. R2α is R-squared defined by

1−
∑
α2it∑

(zitbr)
2 .
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5.6.3 Including Equity Momentum

Finally, I include momeq in the set of instruments and test if the model can match the variation in

estimated bond premia associated with the five characteristics. The test result is shown in Table

9.

The first step regression shows that b̂r for momeq is positive and statistically significant in

presence of other characteristics. That is, the bonds issued by past equity winners tend to earn

high bond returns going forward.

The second step regression shows that the model works in the opposite direction. Both Levelt
and Slopet have negative loadings b̂v on momeq. That is, from the model’s perspective, the bonds

issued by past winners should be less risky. As a result, the model implied expected excess return

function has a wrong sign for momeq. Table 9 shows b̂vλ̂ for momeq is -0.03 while it is 0.07 for b̂r.

As I include momeq in the set of instruments, RMSEα and MAEα become large at 0.18% and

0.15% per month, respectively. The alphas are jointly statistically significant and the GMM χ2

test rejects the model at the 1% level. In conclusion, the two factor model cannot price these test

assets as the pricing errors are both economically and statistically significant.

6 Conclusion

I show that the simple two factor model consisting of the first two principal components of the 10

portfolios sorted on bond spreads prices much of the variation in corporate bond premia. When

the asset pricing tests are done with univariate sorts, the model performs well regardless of the

choices of sorting variables except equity momentum.

I introduce the parametric characteristic-based asset pricing test, and show its flexibility of

incorporating multiple characteristics into the test. It can describe expected excess returns and

covariances of returns with factors as a function of characteristics and check if these functions

are equal. By taking a stand on the functional form of the expected comovement function, I can

estimate risk for individual securities precisely without sorting securities into bins.

The two factor model consisting of Levelt and Slopet cannot be rejected using the four char-

acteristics that best forecast excess returns as instruments, providing a further evidence for the

model. The model can price the variation in bond premia associated with the characteristics other

than the bond spread used to form the factors. However, the model is rejected when it is tested

using the five instruments including equity momentum.
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Table 9: Asset Pricing Test Including Equity Momentum

1st step: Rei,t+1 = zi,tbr + εri,t

s cy log size logMVeq momeq

√
1
NT

∑
(zi,tb̂r)2 F-stats

b̂r 0.54 0.06 -0.17 0.05 0.07 0.40 12.6

t(b̂r) (4.53) (0.91) (-2.57) (1.88) (3.47) [0.000]

2nd step: Vi,t+1 = zi,tbv + εvi,t

s cy log size logMVeq momeq

√
1
NT

∑
(zi,tb̂v)2 F-stats

b̂v,Level 0.96 4.55 -0.97 0.27 -0.38 2.99 12.8

t(b̂v,Level) (0.50) (4.94) (-1.16) (0.83) (-1.38) [0.000]

b̂v,Slope 5.37 -0.40 -0.57 0.15 -0.23 2.79 12.2

t(b̂v,Slope) (6.62) (-0.76) (-1.33) (1.29) (-1.78) [0.000]

3rd step: zi,tb̂r = zi,tb̂vλ+ αi,t

s cy log size logMVeq momeq

b̂vλ̂ 0.52 0.00 -0.06 0.02 -0.03

Level Slope RMSEα MAEα R2α χ2

λ̂ 0.01 0.10 0.18 0.15 0.80 19.54

t(λ̂) 0.93 4.45 [0.000]

Premium 0.32 0.68
Monthly observations from 1973 to 2011. I estimate br, bv and λ by three regressions Rei,t+1 = zi,tbr+εri,t+1,

Vi,t+1 = zi,tbv + εvi,t+1 and zi,tb̂r = zi,tb̂vλ + αi,t. To put time fixed effects, I demeaned the vector zi,t
by subtracting the time-specific mean z̄t ≡ 1

Nt

∑Nt

i=1 zi,t. Each observation is multiplied by the square

root of relative value of the bond at time t. The numbers in parenthesis are t-statistics, where standard

errors are computed taking into account 1,12 and 12 lags of serial correlations (with Newey and West

(1987)’s weighing) for λ, br and bv, respectively. Premium is computed by E
[
f ′t+1ft+1

]
λ and expressed in

percentage per month. χ2 is chi-squared statistics of Hansen (1982). The numbers in bracket are p-values.

RMSEα ≡
√

1
NT

∑
i,t α

2
i,t and MAEα ≡ 1

NT

∑
i,t |αi,t|. R2α is R-squared defined by 1−

∑
α2it∑

(zitbr)
2 .
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A Comparing Overlapping Data Sources

Table 10 compares the mean and percentile differences between the observations used in my analysis

and the overlapping observations in alternative databases. The distribution of the difference in

prices is skewed so that the mean is significantly greater than the median. Though the median

difference is small, some extreme observations exist (shown in 90 percentile values). This is because

the database in comparison has a unreasonable price probably due to recording errors. Using the

data in comparison instead of the one I use in the main analysis will not change my main result,

as when I apply the filters described in Section 3, these unreasonable prices will be completely

eliminated.

The findings of Jostova, Nikolova, Phikipov and Stahel (2010) also support my conclusion.

They use similar data as mine and prioritize the data source in the same way as I did. They show

that whether using only the data with the highest priority and using the average across overlapping

observations do not affect the resulting returns.

B Estimation of Distance to Default

To create a characteristic which measures the probability of default, I will use Merton’s model. The

value of the assets of a firm At follows a geometric Brownian motion.
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Table 10: Comparing the Overlapping Observations Across Databases

RefDat Compare Mean 10ptle 50ptle 90ptle n

Lehman 1.807 0.125 0.935 4.470 12,929

Lehman Mergent 1.674 0.113 0.853 4.191 5,504

Lehman DataStream 1.895 0.125 1.000 4.583 7,425

Trace 1.322 0.010 0.521 3.304 107,770

Trace Mergent 1.356 0.000 0.477 3.375 55,861

Trace DataStream 1.293 0.062 0.613 3.250 51,909

Mergent DataStream 1.646 0.047 0.552 3.678 23,815
The mean and percentiles of price difference (per 100 dollars) are reported. RefDat is the reference data

used in the analysis and Compare is the data presented here for comparison. 10ptle, 50ptle and 90ptle are

10, 50 and 90 percentile values respectively. n is the number of observations.

dAt
At

= µdt+ σAdWt (8)

Let Dt be the book value of the debt of the firm at time t. If the value of the firm’s asset is

less than the book value of debt at the maturity date, then it cannot repay the debt and defaults.

When in default, the bond holders take over the firm immediately and the equity holders receive

zero. If the assets exceed the debt, then the equity holder receives the difference between At and

Dt. This way, the market value of equity St can be considered as the price of a call option. The

equity value is given by Black-Scholes formula for a call option

St = AtΦ(d1)−DtΦ(d2) (9)

where

d1 =
log(At/Dt) +

(
r + 1

2σ
2
A

)
σA

d2 =
log(At/Dt) +

(
r − 1

2σ
2
A

)
σA

and r is a risk-free rate and Φ is a cumulative density function of a standard normal distribution.

We cannot directly observe the market value of the asset At and its volatility σA. Instead, we

can observe the market value of equity St and its volatility σS . By applying Ito’s lemma to the

equity and imposing no-arbitrage condition, we have the risk neutral dynamics of equity St:

dSt = rStdt+
∂St
∂At

AtσAdWt
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By matching coeffi cient, we obtain

σS =
∂St
∂At

At
St
σA

=Φ(d1)
At
St
σA (10)

Equations (9) and (10) give a system of two equations with two unknowns: At and σA. Since

they are non-linear equations, I solve them numerically using KNITRO solver.

C Non-parametric Estimates of the expected excess return func-

tion

To investigate an appropriate functional form, I provide graphical investigations based on non-

parametric kernel regression of the form

Rei,t+1 = f (zi,t) + εi,t+1

where the function f (zi,t) is estimated non-parametrically using Gaussian kernel. Specifically, the

kernel regression estimator at z0 is given by

ft (z0) =
1
Nh

∑N
i=1K

(
zi−z0
h

)
Rei,t+1

1
Nh

∑N
i=1K

(
zi−z0
h

) ≡
N∑
i=1

wi0,hR
e
i,t+1

where K (·) is the normal probability density function and h is the bandwidth of the kernel chosen
to minimize the cross-validation CV (h),

CV (h) ≡
N∑
i=1

(
Rei,t+1 − f̂−i (zi)

)2
π (zi)

f̂−i (zi) =

∑N
j 6=iwji,hR

e
j,t+1∑N

j 6=iwji,h

and π (·) is an indicator function which is one if zi is between 5 percentile and 95 percentile of the
distribution and zero otherwise. The idea of cross-validation procedure is that one has to strike a

balance between minimizing errors and improving effi ciency of an estimate. Putting a large weight

on Rei,t+1 to estimate f (zi) will reduce an error but will not use as much information from the

adjacent observations Rej,t+1, which results in ineffi ciency. I penalize ineffi ciency by using f̂−i (zi),

or a leave one-out estimates in computing CV (h). Minimizing CV (h) amounts to choose an

optimal balance between error minimization and effi ciency of the estimates. I estimate the function
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Figure 4: Bond Spread

ft (z) for each month and take average of them. The standard errors of the estimated expected

excess returns are computed using the time variation of ft (z) accounting for 12 lags. Figures 4 to

17 show the estimated expected excess return function with error bars for each characteristic. I

also plot the fitted line of linear regressions on zt. The result is robust to the choice of the kernel

function and Epanechnikov (quadratic) kernel yields a similar result.

From the figures, we can see that for most of the characteristics, a linear approximation provides

a decent fit. Though statistical tests for the fit of parametric estimates to the kernel regression

estimates are available, I do not pursue them here as I run a multivariate regression (3) instead of

a univariate regression in the asset pricing test. Thus, the estimated kernel regression provides a

limited guidance about how to choose the functional form, requiring a researcher to try multiple

functional form for robustness of the test result.

D Comparing the performance of the standard errors

To compute standard errors, I need to compute

S ≡ E
[
z′i,tεi,t+1ε

′
i,t+1zi,t

]
where εi,t ∈

{
εri,t, ε

v
i,t, ε

r
i,t − εvi,tλ0

}
. If I cluster the standard errors by time, the estimates of S is

given by

Ŝ =
1

NT

T∑
t=1

Z ′tΩtZt
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Figure 5: Current Yield
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Figure 6: Distance to Default
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Figure 7: Momentum (-12 to -2 month returns)
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Figure 8: Log Size
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Figure 9: Log Time to Maturity
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Figure 10: Short-term Debt/Total Debt Ratio
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Figure 11: Tangibility (Property, Plant and Equipment/Total Asset)
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Figure 12: Credit Ratings (AAA as 1, C as 21)
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Figure 13: Age
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Figure 14: Yield to Maturity on Matching Treasury Bonds
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Figure 15: Equity Size
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Figure 16: Equity Book-to-Market Ratio

47



1 0.5 0 0.5 1 1.5
0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

Characteris tics

E(
R

e ) %
 p

er
 m

on
th

NonParametric  Estimate of Expected Returns

kernel
l inear

Figure 17: Equity Momentum (-12 to -2 Equity Returns)

where Zt is Nt− by−L data matrix of instruments and Ωt is the sample covariance matrix of error

term εi,t+1. Since the number of bonds at time t, Nt, is large relative to length of time (Nt >> T ),

Ωt may not be reliable estimates of true conditional covariance matrix E
[
εi,t+1ε

′
i,t+1|zi,t

]
. To

overcome this issue, I impose a structure on the data-generating process of the errors to obtain

reliable estimates. Specifically, as suggested in Ang, Liu and Schwartz (2010), I compute standard

errors using two methods. First, I impose one-factor structure in error terms. Second, I assume

the deciles defined by distance-to-default drive comovements among error terms12.

In the first methodology of computing standard errors, I assume that the error terms have the

one-factor structure

εi,t+1 = ξiut+1 + vi,t+1

where ut+1 and vi,t+1 is iid. Let σ2u denote the variance of ut+1 and Σv denote a diagonal matrix

whose diagonal element is the variance of vi,t+1. Then

Ωt = ξtξ
′
tσ
2
u + Σv

where ξt is a Nt − by − 1 vector which stacks ξi for all i that exist at time t.

Empirically, the shock ut+1 can be obtained as average errors

ũt+1 =
1

Nt

Nt∑
i=1

εi,t+1

12 Instead of using the characteristic-based deciles, Ang, Liu and Schwartz (2010) use ten industries to categolize
securities.
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and the sensitivity parameter ξ is obtained by regressing εi,t+1 onto ut+1. That is, regress

εi,t+1 = γ + ξiũt+1 + vi,t+1

and obtain the OLS estimates ξ̂i and v̂i,t+1.

In the second methodology, I assume that the bond i in decile D has the shock following

εi,t+1 = ζiuD,t+1 + νi,t+1

where ζi is 1− by−10 indicator vector whose D-th entry is 1 and 0 otherwise. uD,t+1 is 10− by−1

vector of decile-wide shocks with covariance matrix Σu and νi,t+1 is an idiosyncratic shock that is

independent across securities and time. Then we have

Ωt = ζtΣuζ
′
t + Σν

where ζt is Nt − by − 10 matrix constructed by stacking ζi and Σν is a diagonal matrix whose

diagonal entry is the variance of νi,t+1. In the article, I use distance-to-default as a characteristics

that defines the deciles. At each time t, I classify bonds that exist at time t into deciles depending

on their value of distance-to-defaults. The decile-wide shock uD,t is constructed by the sample

average

ũD,t =
1

Nt,D

∑
i∈D

εi,t

where Ni,D is the number of securities in decile D at time t. Σu is estimated using the sample

covariance matrix of ũD,t. The idiosyncratic shock νi,t is constructed by

ν̃i,t = εi,t − ζiũD,t

and the sample variance of ν̃i,t is used to estimate the diagonal entries of Σν .

Collin-Dufresne, Goldstein and Martin (2001) show that the residuals of the bond price change

after accounting for fundamentals have a one factor structure. Thus, the one-factor error model

has some empirical support. On the other hand, the distance-to-default decile model is logically

more consistent with the objective of this article in the sense that all the moments of the model

should be estimated as a function of characteristics, not the name of the individual bond.

I show the result of the characteristic-based asset pricing test of the two factor model using three

different measures of standard errors. Here I use the set of instruments that best forecast returns,

as in Table 7. Since it is time consuming to account for time lags in the methodologies of Ang,

Liu and Schwartz (2010), I compute standard errors with no lags for all the three methodologies.

Table 11 shows the estimated standard errors and χ2 statistics using the three alternative

assumptions. I show the result with the same instruments as Table 7 as an example but other
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Table 11: Comparing Alternative Models of Standard Errors

Cluster by time One factor error model DD-decile error model
Point Estimates t-statistics t-statistics t-statistics

br bv,Level bv,Slope bvλ br bv,Level bv,Slope br bv,Level bv,Slope br bv,Level bv,Slope
s 0.53 1.05 5.41 0.55 (3.89) (0.73) (7.17) (4.78) (0.81) (6.61) (3.38) (0.84) (8.64)
cy 0.06 4.56 -0.39 0.01 (0.80) (5.98) (-1.04) (0.87) (8.08) (-1.04) (1.55) (15.44) (-2.38)

log size -0.16 -1.05 -0.62 -0.07 (-1.94) (-1.35) (-1.60) (-2.41) (-1.78) (-1.87) (-3.14) (-2.78) (-3.08)
logMVeq 0.04 0.29 0.17 0.02 (1.35) (1.10) (1.32) (1.81) (1.42) (1.34) (1.54) (1.42) (1.58)

Levelt Slopet Levelt Slopet Levelt Slopet Levelt Slopet
λ 0.01 0.10 (1.07) (4.65) (1.02) (6.32) (2.27) (3.55)

χ2[pv] 1.81 [0.404] 2.12 [0.346] 4.02 [0.134]
Monthly observations from 1973 to 2011. Each observation is multiplied by the square root of relative value of
the bond at time t. The numbers in parenthesis are t-statistics, where standard errors are computed taking
into account 0, 0 and 0 lags of serial correlations for λ, br and bv, respectively. χ2 is chi-squared statistics
for the test of the overidentifying restrictions and the numbers in bracket are corresponding p-values.

choices of instruments yield qualitatively the same result. Comparing χ2 statistic and t-statistics

of λ, the statistical inference coincides with all the three measures of standard errors except for

t-statistic of λ̂ for Levelt using the distance to default decile model. That is, with any measure of

standard errors, the model cannot be rejected at 10% level, λ̂ for Levelt is statistically insignificant

and λ̂ for Slopet+1 is statistically significant. The only difference is that λ̂ for Levelt using

the distance to default decile model becomes marginally significant. Overall, the distance to

default decile model seems to produce standard errors that are too small. This may be due to

the assumption that the sensitivity of the individual error terms to the industry level shock is

restricted to be one. If there is significant heterogeneity in an industry such that the assumption

is unrealistic, the resulting standard errors might be wrong. Nonetheless, it is comforting that the

two factor model is still far from being statistically rejected.

On the other hand, the one factor model produces very similar result to the clustered standard

errors. Overall, with alternative measures of standard errors, I did not find significant evidence

against clustered standard errors.
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